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Abstract—Hardware resource sharing has proven to be an
efficient way to increase resource utilization, save energy, and
decrease operational cost. Modern-day servers accommodate
hundreds of Virtual Machines (VMs) running concurrently,
and lightweight software abstractions like containers enable the
consolidation of an even larger number of independent tenants
per server. The increasing number of hardware accelerators along
with growing interconnection bandwidth creates a new class of
devices available for sharing. To fully utilize the potential of these
devices, I/O architecture needs to be carefully designed for both
processors and devices.

This paper presents the design and analysis of scalable Hyper-
tenant TRanslation of I/O addresses (HyperTRIO) for shared de-
vices. HyperTRIO provides isolation and performance guarantees
at low hardware cost by supporting multiple in-flight address
translations, partitioning translation caches, and utilizing both
inter- and intra-tenant access patterns for translation prefetching.
This work also constructs a Hyper-tenant Simulator of I/O
address accesses (HyperSIO) for 1000-tenant systems which we
open-sourced. This work characterizes tenant access patterns and
uses these insights to address identified challenges. Overall, the
HyperTRIO design enables the system to utilize full available
I/O bandwidth in a hyper-tenant environment.

Index Terms—I/O subsystem, virtualization, address transla-
tion

I. INTRODUCTION

Massive server consolidation in data centers drives higher

server utilization, reduced energy usage, and lower operating

cost. This consolidation is enabled by collocating on the same

physical server multiple tenants in the form of Virtual Ma-

chines (VMs) [8], [14], machine containers [11], or application

processes [20]. All these tenants have to be isolated from each

other but still share computational, storage, and I/O resources.

The ever-increasing number of cores per server enables

the consolidation of even more tenants, which can reach the

order of thousands. A single server using eight Xeon scalable

processors [22] has 448 cores in total. Assuming a 4:1 CPU

oversubscription ratio [27], such a server would have up to

1792 concurrent tenants. On top of the large number of cores,

commodity servers have an ample amount of the main memory

(up to 1TB) [4]. As an example, Firecracker can run hundreds

or thousands of lightweight MicroVMs per server, depending

on their configuration [4]. Drawing an analogy with hyperscale

systems, we name a platform with such a large number of

tenants “a hyper-tenant platform.”
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Fig. 1: High-bandwidth I/O device shared by multiple tenants.

A separate but related trend is that the available I/O

bandwidth continues to grow [1]. Network Interface Cards

(NICs) with 100Gb/s ports are readily available [31], and

a standard for 400Gb/s Ethernet has started to be used. In

addition, some NICs have technology enabling them to be

shared between different servers, making the total number of

tenants per device to be even higher [31]. Given this high

degree of sharing and extreme available bandwidth, it becomes

challenging to architect a system which can fully utilize all

available resources, in particular, available I/O bandwidth.

The challenge that this paper addresses is the severe under-

utilization of available I/O bandwidth as the number of tenants

approaches the hyper-tenant regime (Figure 1). We identify

that this severe I/O bandwidth underutilization is caused by

the lack of scalability in the I/O address translation subsystem

- IOMMU design, device design, and software structures. Hy-

perTRIO solves these challenges by supporting many outstand-

ing I/O address memory translations, partitioning the Device

Translation Lookaside Buffer (DevTLB) to enforce perfor-

mance isolation between tenants, and the introduction of an

intelligent, hyper-tenant-aware, address translation prefetcher

which utilizes both inter- and intra-tenant information. Further,

we show that simply scaling up the size of the DevTLB is

insufficient to enable Hyper-tenant I/O.

The key contributions of this work are:

• Architectural design and evaluation of Hyper-tenant

TRanslation of I/O addresses (HyperTRIO). We inves-

tigate the interaction between I/O device and system
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memory and use cloud benchmarks as a case study.

• The creation and open source release of a Hyper-tenant

Simulator of I/O address accesses (HyperSIO) used for

analysis and performance evaluation1.

• Detailed analysis of inter- and intra-tenant interactions

during I/O address translation.

• Study of IOTLB replacement policies, partitioning, par-

allel address translation, and prefetching of I/O address

translations.

II. BACKGROUND AND MOTIVATION

This section provides background on how I/O device sharing

currently performs and sets up the challenges involved with

translating I/O address mappings for high-bandwidth devices

with large tenant count. We include a case study of how

utilization of I/O bandwidth scales with present day translation

schemes and how current designs are sub-optimal as the

number of concurrent connections increases.

A. Device Sharing and Address Translation

Single Root I/O Virtualization (SR-IOV) provides a way for

one physical device to be shared between multiple independent

tenants [38]. Such I/O devices can be viewed as a number

of separate PCIe devices, each of them represented by a

Virtual Function (VF). For example, some NICs [32], [36] and

GPUs [34] have up to one thousand VFs. In addition, multi-

host technology allows the sharing of one physical device

between up to four hosts [30], [35], [36], further increasing the

total number of tenants. Each VF can be independently used

by a tenant, and it provides isolation, and low virtualization

overhead while efficiently using available hardware resources.

To further decrease the involvement of the tenant’s CPU

when moving data between main memory and I/O device,

modern-day processors use direct memory access (DMA).

When communicating with the tenant’s main memory via

DMA, the device uses guest I/O virtual addresses (gIOVA)

to read/write data from/to it. These addresses are generated

by a tenant’s OS, and they provide a flexible manner for

accessing a shared device by multiple isolated units at the

same time. However, all of the gIOVAs must be translated

to host physical addresses (hPAs) before reading/writing data

in the memory. I/O Memory Management Units (IOMMUs)

implement this functionality for both non-virtualized and

virtualized environments. In the latter case, translation takes

the form of a two-dimensional page-table walk [12], shown

in Figure 2. Every access to a guest page table (labeled as

the first-level walk) incurs a walk through a host page table

(second-level walk). This two-dimensional walk is expensive

and requires 24 or 35 memory accesses for 4-level or 5-level

page tables [21], [23] respectively on the x86-64 architecture.

In order to reduce the number of memory accesses, IOMMUs

can have translation caches (L[1-4]TLBs in Figure 2) or nested

TLBs [12], which store translations from guest physical to host

physical addresses.

1http://parallel.princeton.edu/hypersio.html
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Fig. 2: Two-dimensional 4-level page table walk with 4 KB

pages. gIOVA - guest I/O Virtual Address. hPA - host Physical

Address. gLx, hLx - page table entries corresponding to level

‘x’ of the page table. L[1-4]TLB - Translation Caches.

As an example in Figure 3, we show the translation steps

performed for each incoming packet. First, a tenant places

a gIOVA into its corresponding ring buffer, located inside

of the packet handling logic, which is later read upon the

arrival of a packet. After identifying the source ID (SID)

(e.g. PCIe Bus/Device/Function) for a request, the device

looks up in Context Cache (CC in Figure 3) 1© to find a

corresponding Context Entry (CE) which contains a pointer to

the base of the second-level paging entries and Device ID

(DID) 2© configured by the host. To accelerate translation

from gIOVA to hPA, the device can have a cache to store

the most recent translations shown as the Device Translation

Lookaside Buffer (DevTLB). It is checked for a request 3©,

and the device sends a request to the system over PCIe 5©
with a translated address in the case of a hit 4©, and with

an untranslated address otherwise. The translation subsystem

(IOMMU), located in the chipset in Figure 3, translates the

gIOVA 6©, performing a two-dimensional Page Table Walk

(PTW) when there is a miss in the DevTLB. There can be

multiple hardware structures for caching page-table entries

(L[1-4]TLBs) and for caching translations from gIOVA to hPA

(IOTLB) to accelerate the Page Table Walk. When an entry is

not found in a corresponding caching structure, the IOMMU

accesses main memory 7© to retrieve a page-table entry (PTE).

After the page table walk is finished, the hPA is returned to the

device 8©, and it finishes the requested read/write operation.

Throughout this work, we focus on hyper-tenant environ-

ments where every tenant requires a two-dimensional page

table walk to translate its guest I/O Virtual Address (gIOVA)

to a host Physical Address (hPA). This typically happens when

a tenant has a form of a VM, while containers do not require

the long walk [40]. However, the isolation of the latter ones

usually raises lots of concerns in hyper-tenant setups, and

lightweight MicroVMs are used instead [4].

B. Case-Study of a SR-IOV NIC

As a motivating case study, we use two real-world systems -

one with a server running on an AMD Ryzen 9 3900X
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CPU, and another one with a server running on an Intel

Xeon E7-4870 (Table I). Using these systems, we measure

the bottlenecks for IOMMU translation for a multi-tenant use

case. For each machine we use a dual-port Intel X540-T2 NIC

as an instance of a shared device, supporting a maximum of 63

VFs per port [19]. As a workload, we chose iperf3 v3.1.3 [3]

to create connection pairs between two machines over a

10Gb/s link. On both client and server, core affinity was set

to a different CPU for every connection to avoid resource

contention and improve single stream locality.

AMD – Firstly, we perform experiments using the AMD

machine for running iperf servers and the Client Host for

iperf clients. Using IOMMU performance counters available

on the server, we record the number of IOMMU TLB PTE

hits/misses and the number of nested IOMMU page reads

as we vary number of parallel connections between 2 and

120. We interleave VFs between two available PFs. Every

iperf server was running inside a VM with one of the NIC’s

VFs directly assigned to it. For all the experiments, the total

bandwidth was around 12.1Gb/s, which was the same as when

using non-virtualized configuration (it is less than the expected

20Gb/s due to the NIC design, which was also found in other

studies [2]). Using the recorded statistics, we calculate the

TLB PTE miss rate, which is less than 0.1% when there are

less than 80 connections. However, for a larger number of

connections we observe increasing miss rate for up to 4.3% for

120 connections (shown in Figure 4). In addition to increasing

IOMMU TLB PTE miss rate, the number of nested page

table reads increases more than 400 times for 120 connections

compared to 80 connections. These results indicate that a large

number of tenants cause contention for cached translations and

it will be even more challenging in a hyper-tenant setup.

Intel - We perform a second study using Intel CPUs and a

single 10Gb/s link. In this study we compared I/O bandwidth

when running native versus virtualized (using VF’s) network

interfaces.

In one case (native), the server (Server Host 2) and the

Fig. 4: IOMMU TLB PTE miss rate versus number of parallel

iperf3 connections between 80 and 120 on an AMD system

(Server Host 1).

client were running directly on the host and natively sharing a

single network interface. In the other case, every iperf server

was run inside a VM with a directly assigned VF to it. The

results of our experiments are shown in Figure 5. We observe

that a single connection using a host interface can utilize up to

8.7Gb/s, which is less than the 9.49Gb/s of useful bandwidth

possible for 1500B packets on a 10Gb/s link. This behavior

is caused by a CPU bottleneck on the server side and can

be removed by using faster cores. At the same time, the

maximum achievable bandwidth for the connection using a

VF is only 6.7Gb/s, which is lower than the direct (non-

virtualized) host interface speed. This can be explained by

virtualization overhead.

When the number of client-server pairs increases, bandwidth

per connection goes down, therefore removing the CPU bot-

tleneck (since in our configuration, every client and server is

pinned to a different core). As the number of connections is

varied between two and eight, the physical link is utilized 99%

in both experiments. However, when the number of connection

pairs exceeds eight, the total bandwidth for configurations

using VFs starts to decrease, flattening out at around 0.5Gb/s

for more than 16 pairs. In contrast, increasing the number of

client-server pairs does not affect total bandwidth in the case

of running on the host directly.

From the above experiments, we conclude that it is con-

tention for a shared IOVA translation resource in the virtual-

ized setup which ultimately limits the utilization of available

I/O bandwidth. Every tenant’s OS allocates a number of pages

for use by its device independently, and translations of gIOVAs

for every tenant start thrashing the DevTLB, L[1-4]TLBs, and

overloads the IOMMU with a large number of requests, as

the experiment with the AMD host showed. Unfortunately, the

Intel system does not provide the same level of performance

counter visibility as the AMD system for IOMMU, therefore

we measured the effect indirectly. Using the Hyper-tenant

Simulator of I/O described in Section IV, we show that

contention for the shared translation resources causes I/O link
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TABLE I: System parameters for case-study of SR-IOV NIC.

Server Host 1 Server Host 2 Client Host

CPU
AMD Ryzen 9 3900X Xeon E7-4870, Xeon E3-1231 v3,
1 socket, 24 threads 4 sockets, 80 threads 1 socket, 8 threads

Chipset x570 Intel 7500 Intel C224

Memory 64GB, 400 MB/VM 256GB, 2 GB/VM 16GB
NIC Intel X540-T2, Driver 5.1.0-k

Linux Kernel Host - 5.0.0, VMs - 4.15.0 Host/VMs - 4.15.0 4.4.73
Test Duration 300s

Fig. 5: Cumulative I/O bandwidth for different number of

concurrent connections on an Intel Server Host 2.

utilization to go down with the increasing number of tenants

in the same way as in Figure 5.

III. HYPERTRIO ARCHITECTURE

To remove the guest I/O Virtual Address (gIOVA) trans-

lation bottleneck in a hyper-tenant environment and enable

full utilization of available I/O device bandwidth, we propose

the HyperTRIO architecture - Hyper-tenant TRanslation of
I/O addresses. Below we describe three main innovations

augmenting the base design covered in Section II:

• Pending Translation Buffer (PTB) - The PTB is located

inside of each a device and supports multiple in-flight

translations from different tenants.

• Partitioned Device-TLB (P-DevTLB) - The P-DevTLB

provides architectural support for translation isolation by

assigning a unique tenant’s tag per row of the Device-

TLB.

• Translation Prefetching Scheme - The Prefetch Unit (PU)

initiates translations of the most recent gIOVAs stored

from previous tenant’s accesses to IOMMU using inter-

tenant information.

The HyperTRIO architecture is presented in Figure 6 with

our newly added blocks shown in light gray. We analyze

HyperTRIO performance in Section V.

Pending Translation Buffer (PTB). Every packet coming

from an I/O link generates several gIOVA translation requests

to determine the physical addresses of the corresponding ring

buffer, data buffer, and address for the interrupt mailbox.

For a 200Gb/s link, a 1500B packet arrives every 62ns,

leaving a device working at 1.2GHz [33] only 74 cycles for

all translations to be completed. This amount of available

processing time between requests is even less for real-world

applications. For example, in a key-value store application [7]

most of the keys are under 60B, and values are under 1000B.

HyperTRIO keeps track of all in-flight gIOVA to hPA

translations in a Pending Translation Buffer - PTB. To avoid

head-of-line blocking when an IOMMU performs a two-

dimensional page table walk, PTB supports out-of-order trans-

lation completion. If a new packet arriving from the I/O link

cannot allocate an entry into the PTB, it is dropped. A larger

buffer can prevent the dropping of a packet at additional

hardware cost. However, to keep PTB size reasonable, we look

for optimization in other parts of the design. For example, in

the case of performing a full 4-level two-dimensional page

table walk when doing a translation for 1500B packets, PTB

has to keep track of 112 outstanding requests. Having such

a large number of outstanding requests in hardware becomes

expensive and not scalable with increasing link bandwidth and

the growing number of tenants.

Partitioned Device-TLB (P-DevTLB). The Device-TLB

stores translations from gIOVAs to hPAs. Since it is located

on a device, it provides the fastest translation in the case of

a hit and allows us to avoid expensive communication over

PCIe with a chipset. In a hyper-tenant environment, every

tenant will try to allocate their most recent translations in

the DevTLB, causing the eviction of translations for another

tenant. To exacerbate the problem, independent tenants can

use the same VF driver and OS which allocates the same

virtual addresses for a device (see Section IV-D). The more

tenants that share a system, the higher the chance that two

translations from different tenants will use the same page

address and corresponding entries in the DevTLB will conflict.

Since address allocation by a driver cannot be controlled from

a host machine, we propose a partitioning scheme for the

DevTLB which improves isolation between tenants and helps

to increase utilization of available I/O bandwidth.

Every translation request received by a DevTLB contains

a Source ID (SID) and/or Process Address Space Identifier

(PASID) [20]. SID assignment is controlled by a hypervisor,

it is known after a VF is allocated to a tenant, and it does not

depend on a tenant’s type. Therefore, we can use it to isolate
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translations of independent tenants at the DevTLB.

We add a partition tag (PTag) to every row in the DevTLB,

which should match with a SID in order for translation to be

cached. Depending on the design, the PTag allows caching

of translations only from a single tenant (complete match

between SID and PTag) or for a group of tenants (matching

lower bits of SID and PTag). In Figure 6, rows tagged with

different PTags are cross-hatched differently. This partitioning

of a single DevTLB enables performance isolation, e.g., it

prevents a low-bandwidth tenant from evicting translations for

high-bandwidth tenants.

Translation Prefetching Scheme. The maximum band-

width of a tenant can be specified at configuration time just

after adding it to a system. While the tenant is active, hardware

load balancing and queue management enforce configured

bandwidth to meet QoS, therefore providing a regular number

of accesses to the translation subsystem for all tenants. We use

this insight to predict the next SID based on the previously

observed history. We also found that each tenant’s page is

accessed more than a thousand times (see Section IV-D).

We introduce a Prefetch Unit (PU) on each HyperTRIO

device, which is accessed concurrently with the DevTLB (see

Figure 6). The Prefetch Unit has two parts - a Prefetch Buffer

(PB), and Source ID predictor (SID-predictor). The PB is a

small fully-associative cache, which keeps translations from

gIOVAs to hPAs and it is shared by all tenants in the system.

It is populated after the completion of every prefetch request

generated by a PU. The SID-predictor contains a table which

directly maps from the currently accessed SID to a predicted

SID and a history-length register. The latter is configured by

the host and can be updated whenever bandwidth allocation

per tenant changes and/or when a tenant is added/removed.

The PU is checked along with DevTLB to see if it contains

a valid translation for a current translation request in a PB. If

there is one in a PB, it is returned, and no further requests are

generated. In the case of a miss in the PB, the SID-predictor

is checked for a corresponding entry to a currently accessed

SID. In the presence of a valid entry, the PU sends a prefetch

request with a predicted SID to the chipset. The latter contains

a gIOVA history reader, which uses a predicted SID to read the

most recent translations from main memory. The IOVA history

reader fetches two previously accessed gIOVAs. Instead of

keeping translations from gIOVA to hPA, it issues translation

requests for predicted gIOVAs to an IOMMU. This enables

fetching the most recent translations from the memory when

previous ones were invalidated, and at the same time gives a

chance to cache intermediate translations in the L[1-4]TLBs.

Later requests can benefit from having a hit to these translation

caches in the case of a miss in the DevTLB and PB.

We keep only the Prefetch Buffer and SID-predictor on a

device to provide low-latency in the case of a hit in the PB and

to able to update the SID-predictor on every incoming packet.

IOVA history reader has only a state machine for fetching

the most recently accessed gIOVAs from a tenant, keeping its

hardware cost independent of the number of tenants. Since

prefetching is done in advance, memory access latency can

be hidden by issuing translation prefetching earlier through

configuring history length register in a Prefetch Unit.

IV. HYPER-TENANT SIMULATOR OF I/O

To be able to study I/O devices in a hyper-tenant environ-

ment running real-world workloads, we created a Hyper-tenant

Simulator of I/O - HyperSIO. It consists of three main parts:

• Log Collector - derived from QEMU, it models up to

24 tenants at the same time with Network Interface

Cards directly assigned to them. It records all operations

performed by an IOMMU while translating addresses for

tenants’ devices.

• Trace Constructor - using multiple collected logs, Hyper-

SIO constructs translation information for every tenant

and its sequence of accesses to an IOMMU. Using this

information, it generates a Hyper-Trace which is used by

the hyper-tenant performance model.

• Trace-Driven Device-System Performance Model - a fully

custom trace-driven performance model written in C++.

It incorporates detailed interaction between an I/O device,

translation subsystem and host main memory using real-

world latencies to compute I/O utilization.

We created HyperSIO because modern-day servers have

hundreds of cores [22] and can potentially run workloads with

large numbers of VFs supported by I/O devices [4], [32].

To enable analysis and experimentation with I/O sharing for

varying number of tenants, all accesses between a device,

a server, and an I/O link have to be recorded. Below we

discuss different options which were considered for studying

and evaluating such hyper-tenant systems.

Even though there exist many tools for CPU and memory

instrumentation [26], they typically do not give any visibility

into the chipset and do not allow recording translations of

guest I/O Virtual Addresses (gIOVAs). One option is to modify

the OS or IOMMU drivers and record the information about

page accesses. However, modifying the OS solves only part of

the problem, since some translation requests can be handled

by a hardware translation cache on a device without accessing
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the IOMMU, thereby preventing a researcher from seeing

all memory accesses. The second option would be to record

translation requests directly on a device, but this functionality

is not provided by hardware vendors and would significantly

impact performance of a high-bandwidth I/O device. The third

option is to use available full-system architecture simulators.

Yet they model processor architecture thoroughly, they lack

detailed I/O simulation. On top of that, it is hardly feasible

to simulate hyper-tenant systems with reasonable performance

for real-world workloads when using detailed or cycle-accurate

software simulation. As a result, we decided to create Hyper-

SIO which runs real-world applications, saves I/O device logs,

constructs data-structures and traces for a hyper-tenant system,

and uses a fully custom performance model for studying and

performance evaluation. The source code for HyperSIO can

be found at http://parallel.princeton.edu/hypersio.html.

A. HyperSIO: Log Collector

HyperSIO’s Log Collector is used to record accesses to

an IOMMU from independent tenants running real-world

workloads. As we discussed above, we need to be able to

model a full system, including I/O device, system chipset,

main memory, and processor. QEMU 3.0.0 can emulate all

these pieces, including an IOMMU [5], which is a part of

its Q35 chipset model. However, QEMU lacks a model of

an I/O device supporting SR-IOV for sharing. To get around

this problem, we emulate a system with multiple independent

Network Interface Cards (NICs) where every NIC is directly

assigned to a separate VM. Since modeling a system with

thousands of tenants at the same time would require thousands

of VMs, it was not feasible to do it on our server. Another

QEMU limitation was that in order to directly assign a device

to a VM, the former has to be connected to a PCIe root

complex, which supports only 24 slots at the same time. So,

instead of emulating a system with a thousand tenants, we run

a configuration with fewer tenants multiple times, we record

all the logs separately and use a Trace Constructor to generate

a single trace representing all translations from a hyper-tenant

system.

Figure 7 shows a detailed diagram of the emulated system

used by the Log Collector. We model a server with 64

x86 64 cores, 208GB of main memory, Q35 chipset with an

IOMMU, and 24 e1000 NICs. Since this system is emulated

using QEMU, we name it a Level-1 VM (L1VM). Inside

of L1VM, we run nested Level-2 VMs (L2VM) representing

separate tenants, where each of them is using one NIC directly

assigned to it using PCIe passthrough. As a result, every NIC

is allocated into a separate IOMMU group in the L1VM,

guaranteeing its isolation from other NICs.

After we assign the devices to the tenants, we send traffic

through the NICs. To emulate I/O link connections for the

devices we use tun/tap interfaces available as an option for

QEMU. Every tenant is running a server part of real-world

workload inside of L2VM, and it is connected to the client

through an I/O device managed by an IOMMU. The client is

connected to a tap interface on the host side, and it commu-
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L2VM 23
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Fig. 7: Architecture of an emulated system with up to 24 NICs

directly assigned to VMs.

nicates with the server as if they were connected through a

real network. The Trace Collector runs the same workload for

every client-server pair, starting it in parallel for all the pairs

and recording all translation requests received by the IOMMU.

B. HyperSIO: Trace Constructor

HyperSIO’s Hyper-Trace Constructor produces a single

trace from the logs generated by a Log Collector to model

a hyper-tenant system. The Constructor parses accesses to a

Context Cache, IOMMU, and page table entries from each

trace, creates separate data-structures for translation requests,

context cache entries, and page table entries, and saves them

in a format supported by the Performance Model described

later.

Since the Trace Collector records translation requests from

up to 24 I/O devices for a single run, the Hyper-Trace
Constructor has to read results from multiple runs when the

number of modeled tenants is larger than the number of

emulated devices. Consequently, there stems a question on

how to interleave requests between tenants. Since we study

scalability of I/O bandwidth utilization with the increasing

number of tenants, we model the same bandwidth for all

tenants in a system. The number of consecutive requests sent

by every tenant can be configured through a command-line

option to model bursty traffic.

In addition to configurable number of requests from a

tenant, the Trace constructor supports two options for inter-

tenant interleaving. The first one is Round-Robin (RR),

which is used as an arbitration scheme between queues and

is found in a real NIC [19]. This scheme is efficient for

hardware implementation, and models the case when tenants

have steady long-lived connections providing data with an

arbiter that selects the next stream. The second one is random
(RAND), which represents a scenario for tenants sending

separate requests instead of generating a steady data stream.
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TABLE II: System parameters used by performance simulator.

One-way PCIe latency [33] 450ns
DRAM latency 50ns
IOTLB hit 2ns
# memory accesses during PTW [21] 24
Packet size at I/O link 1542B (Eth Pkt + IPG)

I/O link bandwidth 200Gb/s
L2 Page Cache 512 entries, 16-ways

L3 Page Cache 1024 entries, 16-ways

C. HyperSIO: Performance Model

The HyperSIO Performance Model is a fully custom device-

system model written in C++. It reads traces generated by the

Trace Constructor which includes gIOVA translation requests,

Context Cache, and page-table entries. HyperSIO models the

system described in Section III in order to evaluate different

architectural aspects of an I/O address translation scheme

and their impact on achievable device utilization in a hyper-

tenant environment. The main parameters used for modeling

are listed in Table II.

HyperSIO calculates the next packet arrival time based on

provided I/O link bandwidth and packet size, therefore model-

ing a fully utilized link. When a new packet arrives, it is placed

in a Pending Translation Buffer (see Figure 6) when there is

available buffer space, and it is dropped otherwise. At the

next arrival time, a dropped packet is retried. Every accepted

packet generates three translation requests corresponding to

a translation of the ring buffer pointer, accessing the data

buffer, and sending a notification to the system about a newly

arrived packet. Depending on whether a miss/hit occurs in

every translation structure, a request is either completed and

the packet is considered processed, or a new event is scheduled

in a queue for a corresponding structure. For example, if a

translation request misses in the Device TLB (DevTLB), it

is scheduled to access an IOMMU in the future after the

PCIe traversal time. When a request hits in the DevTLB, its

completion is scheduled after the hit time. Information about

page table entries read from a Hyper-Trace is used to populate

page table caches (L[1-4]TLB in Figure 6) when the IOMMU

performs a page-table walk.

At the end of a simulation, HyperSIO calculates the total

amount of data processed by a device by multiplying the total

number of processed packets from all tenants by an average

packet size. To get an average bandwidth, HyperSIO divides

the total number of bytes by the time spent to translate all

the requests. Since packets are dropped when there is no

available space in a PTB, average link bandwidth is lower than

nominal when the translation subsystem becomes a bottleneck.

Otherwise, if all translations for a packet are finished before

the next one arrives on the link, the total bandwidth is limited

by I/O link throughput.

D. Single- and Multi-Tenant Characterization

Using logs recorded by the HyperSIO Log Collector we

analyze page access patterns for single- and multi-tenant se-

(a) Access frequencies.

(b) Access pattern.

Fig. 8: I/O virtual page access for a single tenant.

tups. From a single-tenant analysis, we make two conclusions.

The first is that all accessed page frames can be split into

three groups based on their frequency (Figure 8a). The second

is that accesses to certain pages have a periodic pattern and

every page is accessed around 1500 times in a row (Figure 8b).

From the analysis of a multi-tenant trace, we observe different

tenants are using the same page frame addresses, increasing

the chance of evicting each other’s translations from caching

structures.

Single tenant characterization. To characterize single-

tenant translation requests, we ran the mediastream benchmark

and recorded around 4.6× 106 IOMMU translation requests

from a NIC. All requests were from 104 pages assigned to

a tenant’s I/O device by its OS. We analyzed the frequency

of accesses to these page frames and found that all of them

can be split into three groups based on the total number of

accesses. Figure 8a shows the frequency of accesses to page

frames in the first and the second groups.

The first group contains accesses to a single gIOVA page

at address 0x34800000. These accesses are to a page

containing addresses of ring buffers allocated to a tenant and

therefore addresses inside that page are translated for every

packet arriving at the I/O link. The second group has 32 page
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frames in the range from 0xbbe00000 to 0xbfe00000
which are used for data buffers. During the test, the L1VM

had huge pages enabled, and therefore all page frames in the

second group are for 2MB pages where each of it is accessed

almost the same number of times. Since a page frame in the

first group is accessed for every incoming packet, it is seen

around 30 times more frequently than page frames for data

buffers. The third group contains 70 page frames between

0xf0000000 and 0xffffffff. They are 4KB in size and

used only after NIC initialization with the total number of

accesses less than 100 times per each page frame (not shown

in Figure 8a due to limited space). So, even though there are

around 5× 106 packets, they access only around 31 pages

most of the time.

Figure 8b shows the order of page frame accesses for the

second group described above. It has a periodic structure since

the NIC is using a ring buffer to store them. Each 2MB page

is accessed around 1500 times sequentially until the driver

unmaps it and starts using buffers located in the next page.

The same pattern of IOVAs was observed previously [6], but

during our experiments the working page set was larger.

Analysis of a single-tenant stream provides two insights into

IOVA access patterns. First, page frames can be grouped based

on their access frequency. When caching translations in the

IOTLB, this fact can be used to decide which translation to

evict in the case of a conflict. The second observation is that

each 2MB page used for data buffers is accessed many times

sequentially, exhibiting high temporal locality. Periodic access

to those pages can be used by a prefetcher to load the next

page. It also shows that switching to a new page frame happens

less frequently than accesses to the same page.

Multi-Tenant Characterization. To model a multi-tenant

system, we run several copies of the same workload used

for a single-tenant setup. All L2VM servers use the same

L1VM host and therefore share the same IOMMU. Though all

VMs are independent of each other, they use the same subset

of page frames for data buffers in the address range from

0xbc000000 to 0xbf000000. This can be attributed to the

fact that all VMs in our experiment run the same OS with the

same version of the device driver. In a virtualized environment

where a tenant has a virtual device directly assigned to it, this

can often be the case since all VFs are identical to each other

and the hypervisor has no control over guest virtual address

assignment. As a result, gIOVA distribution can cause certain

rows in the DevTLB or L[1-4]TLBs to be used more frequently

than others, leading to conflicts between different tenants.

In order to study how I/O link utilization depends on the

number of tenants, we used the HyperSIO Performance Model
and ran different numbers of copies of the same workload.

We assume that DevTLB has 64 entries, which is the same as

the number of IOTLB entries in Intel’s design [33], and use a

200Gb/s I/O link. Figure 9 presents the results of performance

simulation indicating that the maximum achievable aggregated

I/O bandwidth depends on the number of connections in the

same way as our motivational study shown in Figure 5. Since

the DevTLB is a shared resource, it becomes a bottleneck

Fig. 9: Modeled I/O bandwidth depending on IOTLB config-

uration and number of concurrent connections.

when utilized by a large number of tenants. For an 8-way

set-associate DevTLB, more than four concurrent connections

start evicting entries of other tenants, which eventually leads

to thrashing and significantly increases translation time for

every request. Finally, the system becomes limited by the per-

formance of the gIOVA translation subsystem, which involves

traversing the PCIe bus, doing a two-dimensional page-table

walk, and accessing DRAM.

V. EVALUATION

In this section we evaluate the HyperTRIO architecture us-

ing HyperSIO to see how it addresses the challenges appearing

in hyper-tenant environments and how insights about intra- and

inter-tenant interaction can be used to remove guest I/O Virtual

Address (gIOVA) to host Physical Address (hPA) translation

bottleneck.

First, we describe real-world workloads used to model

a hyper-tenant environment. After that, we compare Hyper-

TRIO’s performance with a base design and show that our

architecture efficiently utilizes I/O device bandwidth indepen-

dent of the number of tenants in a system and workload

parameters. Then we study if changing parameters of a default

translation subsystem like the DevTLB replacement strategy

and its size can significantly improve I/O link utilization.

Finally, we perform multiple sensitivity studies looking at how

separate blocks of HyperTRIO - Pending Translation Buffer,

Partitioned Device-TLB, and Translation Prefetching - affect

utilization of a device.

A. Benchmarks

We used three I/O intensive benchmarks for evaluation listed

in Table III. Every benchmark consists of a server and a client.

The client sends a stream of requests or data to the server. Each

client-server pair communicates through a separate network

interface, which prevents the network interface from becoming

a bottleneck. HyperSIO runs the same benchmark for all the

tenants in its emulated system, records translation requests and

related information, constructs a single trace modeling a hyper-

tenant system, and uses HyperSIO’s Performance Model to get
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TABLE III: Maximum, minimum, and total number of trans-

lation requests recorded for every benchmark. Tnt - Tenant(s).

Benchmark Max # Min # Total Transl
Transl/Tnt Transl/Tnt for 1024 Tnt

iperf3 108,510 68,079 69,712,894
mediastream 73,657 5,520 5,652,477
websearch 108,513 43,362 44,402,679

the link utilization for every configuration (see Section IV).

The benchmarks include:

• iperf3 [3] - throughput oriented benchmark stressing

network stack. It generates a steady stream of packets

with a maximum size specified as a parameter. We used

a maximum size of 1500B and restricted iperf3 to use

only IPv4 packets. Each client was run for 60 seconds to

have enough time to record the interval when all tenants

were active.

• mediastream - a benchmark from Cloudsuite 3 [37],

serving videos of different length and qualities to a

client. We used default options, except for the number

of connections per host which was set to eight to stress

the I/O link.

• websearch - another benchmark from Cloudsuite 3, where

a client sends requests to multiple server index nodes.

This benchmark was run for 360s in a steady state instead

of the default 60s to collect longer translation traces. It

also required 12GB of memory per index server which

reduced the maximum number of simultaneously running

tenants to twelve due to the main memory constraints of

the host machine.

As described in Section IV, HyperSIO stops generating a

trace when any tenant runs out of requests in order to avoid

the “edge effect” when only a subset of all tenants is active.

Therefore, the number of requests per tenant depends on which

logs were read by HyperSIO to generate a trace. Table III lists

minimum and maximum number of translation requests per

tenant along with the total number for the 1024-tenant setup.

We also constructed multiple traces for each benchmark

using different inter-tenant interleaving - round-robin
(RR) and random (RAND). The used interleavings are

RR1, RR4, and RAND1, where the number at the end indicates

consecutive number of packets sent to a tenant. For example,

for a bursty traffic pattern, more packets can arrive at a given

time interval compared to a non-bursty traffic. In that case,

RR4 would better capture this parameter compared to RR1.

B. HyperTRIO Scalability

One of the main goals of the HyperTRIO architecture

described in Section III is to enable full I/O link utilization for

devices in hyper-tenant environments by removing the guest

I/O Virtual Address Translation (gIOVA) to host Physical Ad-

dress (hPA) bottleneck. Figure 10 shows maximum achievable

link bandwidth of HyperTRIO compared to a Base architecture

Fig. 10: Scalability of I/O bandwidth for HyperTRIO and Base

designs.

TABLE IV: Architectural parameters of HyperTRIO and Base

configurations used for evaluation.

Parameter Base HyperTRIO
PTB 1 entry 32 entries

DevTLB
64-entries

8-ways, LFU
1 partition 8 partitions

L2TLB
512-entries

16-ways, LFU
1 partition 32 partitions

L3TLB
1024-entries

16-ways, LFU
1 partition 64 partitions

Prefetching
No

8-entry buffer, 48-access stride
Scheme 2 pages history/tenant

using parameters listed in Table IV. We vary number of tenants

from 4 to 1024 and evaluate different inter-tenant interleavings.

For the Base configuration, the maximum achievable I/O

bandwidth does not scale with increasing number of tenants

independent of their interleaving. It scales slightly better for

iperf3 than for two other benchmarks due to regular accesses

of the former one, but for any number of tenants greater than

32, link utilization is between 12 and 30Gb/s, which is at

most 15% of the nominal 200Gb/s I/O bandwidth. For small

number of tenants, interleaving causes eviction of different

translations from DevTLB. With larger burst size of 4 packets,

more evictions are caused by RR4 than by RR1 (mediastream,
websearch), reducing link utilization. In contrast, for large

number of tenants, translations used to access the ring buffer

pointer can be reused inside a burst, therefore RR4 has higher

bandwidth compared to RR1.

In contrast, the HyperTRIO architecture enables the use of

up to 100% of the total link bandwidth in an environment

with 1024 tenants. Its partitioning of DevTLB and Translation

Caches allows the use of these structures more uniformly
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(a) Different 8-way DevTLB sizes (b) Effect of replacing policies (c) Fully associate DevTLB with oracle replacement

Fig. 11: I/O link utilization for the Base design with different DevTLB sizes and replacement policies.

in a hyper-tenant setup, and it also provides enough entries

for caching of translations for low tenant-count environments.

The Prefetching Scheme captures inter- and intra-tenant infor-

mation supplying a valid translation from a Prefetch Buffer
for 45% of requests for websearch benchmark in 1024-tenant

setup. The Pending Translation buffer provides support for

hiding misses to the DevTLB and Prefetch Buffer by keeping

track of in-flight translations and hiding the latency caused

by performing a two-dimensional page table walk. Tenant

interleaving has little effect on HyperTRIO, and in the case

of the least predictable RAND1 order it achieves up to 80%

link utilization with 1024 tenants.

C. Base Configuration Study

In this sensitivity study we want to answer the question of

whether changing some parameters of the Base configuration

can significantly affect utilization of an I/O link.

Scaling DevTLB Size

Figure 11a shows results using the Base configuration with

two different DevTLB sizes. A 1024 entry DevTLB enables

reaching higher bandwidth for up to 64 tenants. However, it

depends on the tenants’ order. For example, a 64-entry size

DevTLB for 16 tenants allows the utilization of the I/O link 3

times more efficiently for RR4 interleaving than a 1024-entry

DevTLB with RR1 interleaving for websearch benchmark.

When the number of tenants exceeds 128, configurations

with both sizes provide the same link utilization for RR1

and RAND1. RR4 gives higher bandwidth due to reuse of

translations inside of a burst as described above. Overall, in a

hyper-tenant setup, when many tenants use the same IOVAs, a

simple increase of DevTLB size does not improve utilization

of available bandwidth due to conflicts in frequently used sets.

Studying DevTLB Replacement Policies

Analysis of a single-tenant trace (see Section IV-D, Fig-

ure 8a) shows that translation requests to some pages are

seen more frequently than to other pages, and motivates us

to implement a Least Frequently Used (LFU) replacement

scheme. We use a 4-bit counter to track the number of accesses

per cache entry, and all the counters in a row are divided by

two when any of them saturates [24]. Having a full translation

trace allows us to build an oracle scheme [9], evicting in the

case of a conflict with the entry which will be used furthest

in the future from the current access.

Figure 11b shows results for the described policies. For

a small number of tenants, all translations fit into DevTLB

without conflicts, therefore allowing the system to fully utilize

available I/O bandwidth. With increasing number of tenants,

total bandwidth starts to decrease, and for more than 64 of

them the translation cache becomes completely thrashed by

requests from different tenants, making the translation subsys-

tem a bottleneck. In-between we see that LFU outperforms the

LRU scheme, potentially improving achievable bandwidth by

up to two times for iperf3 benchmark in a 16-tenant setup. This

is attributed to the fact that evicting a translation corresponding

to the most frequently used page will more likely cause a miss

some time in the feature than evicting one of the translations

for a data buffer. Compared to oracle, LFU performs slightly

worse, but even a perfect strategy does not allow the translation

scheme to scale in a hyper-tenant setup due to long reuse

distance of the same page belonging to a single tenant.

Scalability with Fully Associative DevTLB

Next, we study the effect of the total number of available

entries in the DevTLB on I/O utilization. Once again, we

use insights from Section IV-D, but this time focusing on the

distribution of IOVA accesses in time (see Figure 8b). Since

all pages are accessed periodically, the number of translations

which should be kept in a DevTLB can be small: including

only translation to a page with ring buffers, data buffers, and

interrupt mailbox.

We define active translation set size as the minimum number

of entries in a fully-associate DevTLB required to achieve the

full utilization of an I/O link. Among three benchmarks, iperf3
has the most regular access streaming pattern, and its active

translation set is 8. mediastream and websearch benchmarks
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(a) Effect of DevTLB and L[1-4]TLBs partitioning
for HyperTRIO configuration in Table IV.

(b) Effect of Pending Translation Buffer (PTB)
size on achievable bandwidth.

(c) Improvements with Translation Prefetching
Scheme compared to a design with only PTB and
Partitioned DevTLB.

Fig. 12: Contribution of Pending Translation Buffer, Partitioned DevTLB, and Translation Prefetching Scheme to I/O link

bandwidth in HyperTRIO design.

have a much higher number of active pages for a single

tenant - hypothetical 32- and 36-way fully associative caches

are needed respectively. Compared to iperf3, they have less

regular access patterns, which requires more pages.

Figure 11c shows how I/O link utilization scales for full-

associative DevTLBs with increasing number of tenants. In

this study we use the oracle replacement scheme to remove the

effects of evicting a wrong entry and focus only on tenant in-

teraction in an ideal scenario. As can be seen from Figure 11c,

in all benchmarks, using more than eight tenants produces low

bandwidth utilization. Basically, when the number of tenants

reaches the number of available translation entries, every new

request starts to miss in the DevTLB, and the translation

request is forwarded to a chipset to complete the translation.

Though its total processing time depends on a miss/hit to

L[1-4]TLBs, for high bandwidth I/O devices even just PCIe

latency will severely affect the total throughput.

D. HyperTRIO Evaluation

Scalability of the Partitioning Scheme

From the two previous studies, we observe that neither

changing DevTLB replacement policies nor increasing its

associativity allows us to scalably use the I/O link. In this

case-study we evaluate how partitioning of the DevTLB and

L[1-4]TLBs described in Section III affects total performance.

We set partition size to one 8-entry row per tenant, even

though mediastream and websearch benchmarks have larger

active translation sets per tenant. This decision is made in

favor of having more isolated partitions for large numbers of

tenants. Exploring the optimal number of partitions and the

number of devices per partition is left outside of the scope

of this work, giving an assumption that all the tenants fairly

share an available I/O device.

Figure 12a presents results for the proposed scheme. Link

utilization stays high until multiple devices start using the

same partition. Partitioning an 8-way set-associative DevTLB

provides significant improvements over the base case, but at

the same time it limits the maximum possible cached trans-

lations available for every tenant. The benefit of the scheme

comes from isolation and independent management of tenants,

allowing translations to evict entries which belong only to the

same partition. Overall, partitioning improves utilization better

than simply increasing associativity or changing replacement

policy of DevTLB, but it still does not solve the scalability

challenge in hyper-tenant environments.

Pending Translation Buffer

The Pending Translation Buffer (PTB) allows HyperTRIO

to hide translation latency in the case of a miss in the DevTLB.

This case study assumes the DevTLB has 8 partitions as in the

previous experiment, and it augments that configuration with

a PTB, studying its effect on I/O link utilization.

Figure 12b shows simulation results for different PTB sizes.

With eight entries it enables reaching full I/O bandwidth for

a partitioned design with up to 16 tenants (compare with Fig-

ure 12a). Cumulative effect of both units gives an opportunity

to hide translation latency when missing into DevTLB when

the active translation size is larger than the number of DevTLB

entries per partition. Translation requests which come after a

missed one can be started before the previous one is finished,

effectively enabling hit under miss. Further size increase of the

PTB to 32 entries allows us to achieve an aggregated 136Gb/s

for 1024 tenants for all benchmarks. Keeping track of more

in-flight translations can improve utilization further, however

it becomes expensive from a hardware point of view and does

not scale for larger I/O bandwidth.

Translation Prefetching Scheme

Finally, we show the contribution of the Translation

Prefetching scheme into total link utilization. As a base line

we use the configuration from a previous case study with
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partitioned DevTLB and L[1-4]TLBs, and with PTB of size

32, augmenting it with prefetching described in Section III.

To study the accuracy and timeliness of a prefetcher [45], we

analyzed different Prefetch Buffer (PB) sizes, history length,

and number of prefetch requests per Source ID. Since PB

is a fully associative buffer, it should be kept small, and

we found that eight entries are a good trade-off between

precision and hardware resources used for the buffer. History

length is a parameter which can be configured by a hypervisor

after the addition/removal of a tenant. We found that for our

simulated system a history depth of 48 requests is optimal

across different number of tenants. The last parameter we

studied was the number of prefetched translations for each

tenant. In order to keep the translation for several tenants in a

small PB, we prefetch the two most recently used translations

per tenant.

The effect of a Prefetching Scheme on I/O link utilization

is shown in Figure 12c. For hyper-tenant configurations it

improves link utilization by up to 30% for the websearch
benchmark. It also scales better than simply increasing the

PTB size, since the prefetch buffer and history length can

stay the same for larger number tenants. All page translation

history of accesses is kept in the main memory which is an

ample resource in today’s servers.

VI. RELATED WORK

Much work has evaluated the scalability of IOMMU de-

sign, management, protection, and their impact on I/O link

utilization. Depending on message size, CPU utilization can

become significant due to frequent page map and unmap

operations [10]. However, it was shown only for a single

client-server pair. To reduce the number of cycles required to

process every packet, a hierarchical page-table was replaced

by a flat one for every tenant’s ring buffer [28]. However, it

required modifications of device drivers and guest OSes, which

is not always possible in hyper-tenant environments. Different

protection schemes and their scalability as part of IOMMU

design were also studied [29], [47]. Some schemes allow the

use of up to 90% [29] of the total throughput of a device by

reducing the cost of page unmapping. However, this work has

focused on the software side of IOMMU management, without

studying the interaction between multiple independent tenants

in the system. Previous work also evaluated the performance

of IOMMU page allocation for a 10Gb/s NIC, using 270

netperf instances to stress the system [39]. Compared to all

the aforementioned work, HyperTRIO looks at the behavior

of gIOVA to hPA translation subsystem from a hardware

point of view in hyper-tenant environments with up to 1024

concurrently running tenants.

Prior work characterized IOVA streams showing that evic-

tion policy for IOTLBs do not change miss/hit ratio and

suggest using prefetching for adjacent pages [6]. They also

proposed applying page coloring to offset address spaces of

different I/O devices for their isolation. With HyperTRIO,

we did partitioning in hardware. In our work, tenants use

2 MB pages, and we found that devices used in total 32 pages

for data buffers instead of 10 as described before [6]. When

studying replacement policies, in addition to LRU and oracle
schemes, we evaluated LFU which was motivated by tenant’s

trace analysis. We also designed a Hyper-Tenant Performance

Simulator for I/O which incorporates real latencies instead of

just calculating the number of hits to IOTLB. Finally, our

prefetching scheme uses a completely different approach by

keeping track of translation history in the main memory and

prefetching it in hardware. In contrast to previous work [6],

HyperTRIO does not use software hints.

For GPUs it was shown that a highly threaded Page Table

Walker significantly improves the performance [41], [42],

[44], [46]. A SIMD instruction generates up to 64 transla-

tion requests [44], but multiple GPU lanes usually cooperate

towards completion of a single task, providing opportunities

for coalescing of multiple translation requests into one [44]. In

contrast, every tenant sharing an I/O device is independent of

others, and we cannot rely on any cooperation between them.

Partitioning and leveraging multiple data sources was pre-

viously done for the memory hierarchy [15], [17], [18]. Data

cache bypassing and pinning was studied in the context of

GPUs [25]. To the best of our knowledge, we make the first

attempt to use partitioning for translation structures in a multi-

level translation hierarchy for hyper-tenant environments.

Multiple efforts were done to optimize one- and two-dimen-

sional page-table walks [12], [13], [16], [43], [44]. However,

those studies focus on data-intensive applications and study

MMU designs, while this work looks at IOMMU address

translation. Shared I/O devices have multiple unique features

including usage of ring-buffers, knowledge of tenant’s band-

width at the assignment time, and more strict requirements for

total translation time due to limited buffering space.

VII. CONCLUSION

In this work, we presented HyperTRIO, an architecture for

scalable guest I/O Virtual Address (gIOVA) to host Physical

Address (hPA) translation in hyper-tenant environments. We

showed that increasing the number of tenants leads to poor

I/O link utilization and prevents the system from using all the

available bandwidth of high-throughput devices. We proposed

to use a Pending Translation Buffer to support multiple in-

flight translations on a device, described a Partitioned Device-
TLB for tenant isolation and uniform utilization of hardware

resources, and proposed a scalable Prefetching Scheme which

uses inter- and intra-tenant information to predict and translate

gIOVAs to hPAs. In order to analyze and study hyper-tenant

environments, we built the Hyper-Tenant Simulator of I/O -

HyperSIO. Overall we find that the HyperTRIO architecture

enables the system to utilize more than 90% of the 200Gb/s

link in environments with up to 1024 independent tenants

compared to only 6% for a design without the support of

multiple in-flight translations, Partitioned Device-TLB, and

Prefetching Scheme.
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