
Architectural Implications of
Function-as-a-Service Computing

Mohammad Shahrad, Jonathan Balkind, David Wentzlaff
Princeton University

Project Website

Performance Criteria
& Breakdown

October 12-16, 2019 
Columbus, Ohio, USA

Paper PDF

Function-as-a-Service (FaaS)
Serverless Computing

FaaS Differs From Prior Cloud Offerings

● Short function executions
● Developer does no server provisioning
● High concurrency (with inefficient isolation)
● Fine-grained pricing based on execution 

time, memory, and request counts
● Machine type not guaranteed/unknown 

Zooming in on a
Serverless Server 

Prior work:
● External reverse engineering of serverless 

offerings 
● System-level design
● Building new or mapping old applications

We use Apache OpenWhisk

Function Container States

Latency Modes

Performance Breakdown

Branch Prediction

Shortest function has 20x branch MPKI of longest

Last-Level Cache (LLC)

We observed a low LLC requirement for both the 
platform and our tested applications.

Memory Bandwidth

Functions’ memory bandwidth demands vary.

The FaaS Demand Triangle

There is a tension between server capacity, 
function execution times, and latency.

Concurrency & Server Capacity

Test Setup:
Intel Xeon E5-2620 v4, 8-cores (16-threads), 
20MB Last-Level Cache, 16GB 2133MHz DDR4 

We built FaasProfiler

● FaasProfiler invokes functions in chosen 
invocation patterns

● Collects profiling data from standard tools 
and performance counters

● Results can be compared/analysed using 
standard Python data science tools

https://github.com/PrincetonUniversity/faas-profiler 

https://github.com/PrincetonUniversity/faas-profiler

