
AutoSVA: Democratizing Formal Verification of
RTL Module Interactions

Marcelo Orenes-Vera, Aninda Manocha, David Wentzlaff and Margaret Martonosi
Department of Computer Science and Electrical Engineering, Princeton University

Princeton, New Jersey, USA
Email: {movera, amanocha, wentzlaf, mrm}@princeton.edu

Abstract—Modern SoC design relies on the ability to separately
verify IP blocks relative to their own specifications. Formal
verification (FV) using SystemVerilog Assertions (SVA) is an
effective method to exhaustively verify blocks at unit-level. Unfor-
tunately, FV has a steep learning curve and requires engineering
effort that discourages hardware designers from using it during
RTL module development. We propose AutoSVA, a framework
to automatically generate FV testbenches that verify liveness
and safety of control logic involved in module interactions. We
demonstrate AutoSVA’s effectiveness and efficiency on deadlock-
critical modules of widely-used open-source hardware projects.

Index Terms—automatic, modular, formal, verification, SVA

I. INTRODUCTION

Heterogeneous SoC design is a lengthy, expensive process
that necessitates verification at early stages of development to
avoid late bug fixes that thwart performance or area goals [15].
SoC modules may be developed in various contexts and exhibit
complicated interactions [3]. With the numerous dependencies
that occur between them, module interface verification is
necessary to prevent opportunities for livelock and deadlock.
Fig. 1 presents the Ariane core [1] and the cache hierarchy of
the OpenPiton manycore [2], used as an example throughout
the paper. Among the module interactions, the Load-Store Unit
(LSU) is critical for the forward progress of the system.

SystemVerilog Assertions (SVA) [11] is often used for RTL
verification because it is a powerful language for defining a de-
sign’s properties and specifying temporal dependencies. SVA
properties can be checked through both test-driven simulation
and Formal Verification (FV) in order to reveal bugs. However,
only FV tools can exhaustively test a given Design-Under-
Test (DUT) and consequently are most suitable for verifying
forward progress [6], [18]. Unfortunately, these tools present a
steep learning curve and require significant engineering effort
to set up a useful FV testbench, i.e. writing appropriate proper-
ties and specification constraints. This upfront knowledge and
effort discourages hardware designers from using FV [16].
Some tools generate SVA from a higher abstraction layer [10],
[12], but creating a high-level model and mapping it to RTL
signals is still cumbersome. These tools also do not cover
important properties like forward progress.

With the goal of making FV agile and widely used among
hardware designers, we make two key observations: (1) Al-
though interactions between RTL modules may take place

Issue
stage

LSU

MMU

lsu_load

lsu_store

L1-I$

L1-D$
L1.5$ L2$

slice

 OpenPiton Tile

NoC

Ariane Core

Fig. 1. Heterogeneous SoCs such as OpenPiton+Ariane, involve dependencies between
modules. Verifying these interactions is critical to guarantee forward progress in the
system. For example, a load request to the LSU (blue) must receive a response for a
memory request to eventually complete.

via different mechanisms, a common design pattern across
many of them is request and response. We advocate for
automatic support of FV for this pattern. (2) Capturing the
request/response abstraction in a model allows for automated
reasoning about RTL interfaces and their expected interac-
tions. This work proposes a language centered around a
transaction model. This model’s applicability is not limited to
modules with explicit requests/responses; it can express other
interface mechanisms, e.g. pipeline stages that receive requests
from a previous stage and send them to the next stage.

Approach: Given our observations, this work proposes
AutoSVA, a framework to automatically generate Formal
verification Testbenches (FT) for a given DUT. The designer
of the DUT only needs to identify relevant transactions and
annotate them in the module interface using a simple lan-
guage. The framework then generates properties that verify
the transactions are well-formed and make forward-progress:
they satisfy liveness (every request is eventually followed
by a response) and safety (expectations for attributes of the
response). Through its automated reasoning, AutoSVA creates
the necessary scaffolding code to express these properties and
tool-specific commands to drive the FV process, alleviating
the hardware designer from significant engineering effort and
democratizing the use of FV for verifying forward progress.

FTs generated by AutoSVA can then be supplied to a
FV tool, e.g. JasperGold [6] or the open-source SymbiYosys
tool [18]. AutoSVA thereby provides a frontend for automatic
FV of an important subset of the correctness problem—
ensuring RTL modules’ interface expectations.

Our main contributions are:
• A language that creates a unified transaction abstraction

to denote RTL interface interactions and dependencies.
This enables automatic reasoning about RTL properties.

• An automated procedure to generate FTs that express
liveness properties about transaction temporal dependen-
cies and safety properties about control-logic attributes.978-1-6654-3274-0/21/$31.00 ©2021 IEEE

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
//Assert that every request has response, and every response had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

Fig. 2. To verify the load interface of the LSU, a hardware designer would need to write
many SVA properties and auxiliary code. AutoSVA automatically generates all modeling,
removing the burden from the designer.

• Demonstration of AutoSVA’s effectiveness on 7 control-
critical RTL modules of the widely-used open-source
projects Ariane and OpenPiton [1], [2]. As one example,
within 1 hour, AutoSVA generated a FT for Ariane’s
MMU, discovered a bug, and verified the bug-fix.

II. MOTIVATING EXAMPLE

SVA is SystemVerilog’s formal specification language [11],
and offers a mature approach for verifying RTL. It can express
Linear Temporal Logic (LTL) formulas over interface signals
to build properties about module interactions. LTL specifies
temporal relations, which fall into two major classes: safety
and liveness properties. Safety properties specify that “nothing
bad will happen”, e.g. a response must have had a request;
while liveness specify that “something good will happen”, e.g.
a request is eventually acknowledged.

Fig. 2 presents a subset of the modeling and properties
that are necessary to verify forward progress for the load-
store unit (LSU) in Ariane (depicted in Fig. 6). For example,
lsu load eventual response is a liveness property to check
that any load request eventually receives a response with
the same transaction ID. Verifying expectations about module
interfaces goes beyond writing properties; it requires code
to sample transactions and symbolic variables to track them.
AutoSVA automatically generates all of this necessary code.

Properties in SVA can use one of three directives: assert,
assume and cover. Assumptions have different meanings based
on how input stimuli are generated. In RTL simulation, inputs
are driven either by manual or random tests, and thus assume
has the same meaning as assert, i.e they check that the property
holds. Conversely, FV tools treat inputs as Boolean vari-
ables, and assumptions constrain the state space exploration
by preventing some behaviors, while assertions check that
properties hold on the explored paths. FV tools then use a
variety of solver engines [7] based on formal methods, such
as model checking, which uses SAT (satisfiability) [4] or BDD
(binary decision diagrams) [13], to exhaustively search for
property violations. FV search may result in a counterexample

/*AUTOSVA
lsu_load: lsu_req -in> lsu_res
lsu_req_val = lsu_valid_i && fu_data_i.fu == LOAD
lsu_req_rdy = lsu_ready_o
[TRANS_ID_BITS-1:0] lsu_req_transid = fu_data_i.trans_id
[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id,fu_data_i.fu}
lsu_res_val = load_valid_o
[TRANS_ID_BITS-1:0] lsu_res_transid = load_trans_id_o
*/

Fig. 3. The LSU designer only needs to annotate the RTL interface using AutoSVA’s
language to generate a FT (containing among other things the properties and modeling
code shown in Fig. 2). The first line describes a relation between a request (italic blue)
and a response (italic green) interface; the remaining lines map RTL interface signals to
transaction attributes (bold).

(CEX) that highlights the violation of a property, or proof that
properties hold, i.e. the solver converges and finds no CEXs.

The underlying dynamics of FV and SVA make it difficult to
intuitively understand the consequences of various properties
expressed, such as the behavior of symbolic variables, e.g.
symb lsu transid in Fig. 2, which allow the tracking of
indices with a single assertion. Furthermore, subtle mistakes
in assumptions, e.g. using the |−> implication symbol in the
lsu stability assumption, can over-constrain the state space
and end up proving vacuity. Manually inserting assertions
can be cumbersome and error-prone for a hardware designer,
and particularly frustrating when CEXs appear due to illegal
inputs of not yet modeled interfaces [9]. Thus, AutoSVA
automatically models and expresses the expected behavior for
module transactions.

Hardware designers can employ SVA properties for Test-
Driven-Development (TDD), where CEXs help to refine the
design [17]. Moreover, this can be applied at early stages
of RTL module development by using unit-level FV [5].
However, FV’s steep learning curve and necessary engineer-
ing effort preclude designers from using it in practice [16].
AutoSVA democratizes FV for hardware designers and
makes TDD practical by automating a key component of
the FV problem: liveness and safety of module interfaces.
Instead of aiming to support functional FV, which is very
implementation-dependent, AutoSVA focuses on verifying that
modules interact through well-formed transactions. This verifi-
cation entails checking certain attributes over the control logic
involved in transactions and mapping them to properties that
ensure that every module makes progress (does not hang).

Fig. 3 presents an example of the simple usage of Au-
toSVA’s language. These annotations unleash automated rea-
soning to generate the modeling and properties (shown in
Fig. 2) surrounding liveness and safety for the Ariane core’s
LSU . Section III explains the syntax of the AutoSVA language
and semantics of each annotation. Section IV shows how these
annotations can be applied to different interface styles.

III. THE AUTOSVA FRAMEWORK

AutoSVA focuses on verifying liveness, and its well-formed
transactions allow it to utilize a common abstraction from RTL
interfaces that avoids the complexity of specific module imple-
mentations. By capturing a common design-pattern, AutoSVA
can automatically generate useful Formal Testbenches (FT).
We denote a FT as useful when it (1) has sufficient mod-
ule interface modeling to avoid spurious CEXs and capture

Binding File

Property File
SystemVerilog

Assertions (SVA)

Binding File(s)
 Bind RTL with SVA

AutoSVA
script

Formal
Tool Formal Proofs/CEX's

Tool-specific
configuration

and commands

Property File(s)
SystemVerilog

Assertions (SVA)

RTL File(s)

Annotations

Implementation

Fig. 4. AutoSVA is an agile framework for FV of RTL using SVA. The files that define
the FT are denoted in blue. Dotted lines indicate designer input.

relevant CEXs which lead to uncovering bugs, and (2) does
not miss legal scenarios due to over-constraining assumptions.
Moreover, AutoSVA reduces the state-explosion scalability
problem because it deliberately focuses on control logic and
FV tools can be instructed to automatically ignore datapaths.

Fig. 4 presents an overview of AutoSVA’s verification pro-
cess. AutoSVA takes as input the interface declaration section
of the RTL module acting as the DUT. The interfaces should be
annotated using AutoSVA’s language for interface abstraction
(defined at Section III-A). Once the abstraction is defined for
a DUT, AutoSVA generates the FT that includes a property
file describing the properties to verify, all necessary modeling
about RTL blocks external to the DUT, and a binding file to
connect the properties to signals in the DUT.

Based on the FV tool to target, AutoSVA generates con-
figuration and command files. AutoSVA currently supports
JasperGold [6] and SymbiYosys [18]. Once the properties,
binding and tool-specific files are generated, AutoSVA invokes
the FV tool to start the verification process. This returns either
property proofs or CEXs that highlight possible bugs in the
RTL. A hardware designer can then quickly set up a FT and
locate bugs by using AutoSVA as a frontend for FV tools.

A. AutoSVA Language to Express Transactions

AutoSVA’s transaction abstraction involves two events con-
nected with an implication relation. From the DUT’s per-
spective there are two types of transactions: (1) incoming
transactions describe when a DUT receives a request and is
responsible for eventually triggering a well-formed response or
another request, and (2) outgoing transactions describe when a
DUT triggers a request that eventually must receive a response.

The two events in a transaction are associated with RTL
interfaces, which are the connection points of RTL modules.
For example, incoming transactions can map a cache lookup
interface to define a liveness condition that the cache lookup
should eventually have a response, and to define a safety
condition that this response must satisfy certain properties,
e.g. maintain the same transaction ID the request had.

AutoSVA maps transaction events to interfaces through
annotations expressed in its language. These language annota-
tions are written as Verilog comments on the interface decla-
ration section of an RTL file to identify module interfaces that
participate in transactions. To distinguish these annotations
from regular code comments, AutoSVA requires annotations to

TABLE I
THE AUTOSVA LANGUAGE. CONSTANTS ARE WRITTEN IN LOWERCASE AND

SYNTAX IN UPPERCASE. STR AND ASSIGN ARE VERILOG’S SYNTAX FOR STRINGS
AND ASSIGNMENTS.

TRANSACTION ::= TNAME: RELATION ATTRIB
RELATION ::= P −in> Q | P −out> Q
ATTRIB ::= ATTRIB, ATTRIB | SIG = ASSIGN | input SIG | output SIG
SIG ::= [STR:0] FIELD | STR FIELD
FIELD ::= P SUFFIX | Q SUFFIX
SUFFIX ::= val | ack | transid | transid unique | active | stable | data
TNAME, P, Q ::= STR

TABLE II
PROPERTIES GENERATED FOR EACH TRANSACTION ATTRIBUTE.

Attribute Properties generated

val∗ If P is valid, then eventually Q will be valid and
for each Q valid, there is a P valid

ack∗ If P is valid, eventually P is ack’ed or
P is dropped (if its stable signal is not defined)

stable If P is valid and not ack’ed, then it is stable next cycle

active This signal is asserted while transaction is ongoing

transid∗ Each Q will have the same transaction ID as P

transid unique There can only be 1 ongoing transaction per ID

data∗ Each Q will have the same data as P

be preceded with an AUTOSVA macro, or be contained within
a multi-line comment region that starts with it.

Table I presents the formalization of the AutoSVA language.
P and Q represent two interfaces which have a temporal
implication relation, which is either incoming “−in>” or
outgoing “−out>” from the DUT’s perspective, and share
a transaction named TNAME. Multiple transactions can be
defined with unique names. ATTRIB definitions map interface
signals to transaction attributes. Each definition must be placed
on a separate line in the RTL, i.e. distinct line number, and
must be prefixed with the interface name.

Implicit definitions are native interface signal declarations
(preceded by input/output signals) that are already defined in
the RTL design. If they follow the FIELD naming conven-
tion, AutoSVA can automatically identify these fields without
annotations, which is especially useful for early-stage RTL
verification. AutoSVA’s parser ignores signal declarations that
do not match P or Q prefixes and the language’s legal suffixes.

Explicit definitions define new signals to extract transaction
attributes that are not explicitly defined with interface signals.
These are useful for renaming signals that do not match Au-
toSVA’s language, extracting fields within structs, and defining
attributes based on multiple interface signals. Fig. 7 presents
examples of these definitions for a few modules.

B. Property Generation Based on Transaction Attributes

AutoSVA generates properties based on how transactions
are defined, as more attributes indicate more characteristics
to verify. Table II presents the properties that result from
the presence of each attribute. AutoSVA does not require all
possible transaction attributes to be defined in order to generate
meaningful properties. For example, an implication relation
between P and Q with just the val attribute defined indicates
the two interfaces communicate and thus a liveness property
is generated for the transaction. The absence of an ack signal
indicates the request/response is always accepted.

Some of the properties expressed in Table II cannot be
expressed in SVA directly, and thus AutoSVA generates all
necessary auxiliary Verilog code. For example, verifying that
every response followed a previous request requires counting
the number of ongoing transactions (done with registers in
Fig 2). The transid attribute allows tracking transactions to
reason about other attributes, such as data, which is used
to verify data integrity. This is important for interface fields
which are immutable between P and Q, e.g. data in a queue
or address in a memory request.

Attributes marked with * at Table II generate properties that
are asserted when the transaction is incoming and assumed
when outgoing. E.g., for the val attribute, the word ”eventu-
ally” indicates liveness when the DUT is expected to respond
and fairness when it is waiting for a response. For attributes
stable and transid unique, the opposite holds; properties are
assumed on incoming and asserted on outgoing transactions.
The attribute active is always asserted when defined.

Submodule Properties: When the DUT has a submodule
whose inputs are driven by actual logic, it is worthwhile to
ensure that assumptions about these inputs hold. AutoSVA
assumptions can be converted into assertions by changing
the value of the ASSERT INPUTS parameter. Submodule
properties can be linked to the parent’s through AutoSVA’s
parameters: ”-AM” includes the properties when the submod-
ule was the DUT (assumptions over outgoing requests) and
”-AS” converts all assumptions into assertions.

End-to-End Properties: SVA allows writing properties that
use internal RTL logic (not visible at the interface). While
this is often necessary for full functional verification, it
causes properties to depend on RTL implementation details.
To overcome this, AutoSVA writes end-to-end properties
which solely describe interface signals, but cover the whole
path from input to output interface. End-to-end properties
are implementation-agnostic, and thus can be automatically
generated pre-RTL, making AutoSVA a great framework for
Test-Driven-Development (TDD).

Property Reuse: In addition to FV, AutoSVA property
files can be utilized in a simulation testbench to ensure that
assumptions hold during system-level testing. Although many
RTL simulation tools do not support liveness properties, all
control-safety properties and X-propagation assertions can be
checked during simulation. AutoSVA generates X-propagation
assertions, which check that when the val signal of an interface
is asserted, none of the other attributes have value X (concur-
rently 0 and 1). Because formal tools do not consider X’s and
instead assign arbitrary values of 0 or 1, these assertions are
only checked during simulation (under a XPROP macro).

C. AutoSVA Implementation and Process Steps

AutoSVA is implemented in Python using only standard
libraries to provide portability and ease of use. AutoSVA
generates FTs in under a second. Fig. 5 details its five steps.

(1) Parser: AutoSVA parses the signal declaration section
of the annotated RTL file to identify global parameters, e.g.
cache associativity or queue size, annotations in the AutoSVA

Fig. 5. Steps of the AutoSVA framework. It receives an annotated RTL file and the FV
tool to target, and it outputs a FT that is ready to be run.

language, and interface input/output signals. Based on the
annotations, the parser identifies which pairs of interfaces par-
ticipate in transactions and creates a mapping from interface
pairs (P and Q) to a list of their attribute definitions.

(2) Transaction Builder: AutoSVA builds transaction objects
based on interface fields and implication relations identified by
the parser. During this process, AutoSVA can detect syntax
errors in annotations, e.g. when transid or data fields are
defined in only one of the interfaces of a transaction, or with
mismatched data widths.

(3) Signal Generator: Before generating properties based
on transactions, AutoSVA generates auxiliary signals, such
as symbolics, which are unassigned variables used to build
assertions. Symbolic variables are unconstrained, and allow
FV tools to explore all their possible values in a single
assertion. For example, a single assertion can be used to reason
about all lines of a cache if a symbolic signal is used to index
the cacheline. AutoSVA also generates handshake signals (as
conjunctions of val and ack) to indicate that a request or
response takes place.

(4) Property Generator: AutoSVA creates properties based
on the transaction attributes and type (incoming or outgoing).
These properties can verify liveness, uniqueness, data integrity,
stability, or X-propagation (detailed in Section III-B). SVA
properties are explicitly written in the property file. AutoSVA
does not use SVA macros or checkers to provide better
readability in case the user wants to explore the properties or
a verification engineer wants to extend the FT for functional
correctness. The properties are tool-agnostic, and written to be
most efficient for FV tools to run, e.g. using symbolic indexes
for transid tracking. The authors have created this tool based
on lessons learnt from prior art [8], [9], [16] and years of
industry and academic experience with FV of RTL.

(5) FV Tool Setup: Once the SVA properties are generated,
AutoSVA links them to the FV tool that the hardware designer
selects. Furthermore, AutoSVA supports linking the FTs of
submodules of the DUT, that had already been generated, by
using script parameters during AutoSVA’s invocation.

 Ariane's Load-Store-Unit (LSU)
.
.
.
.

.

LU

SU

Black-
boxed
Issue
stage

MMU

.
.dtlb_ptw

DTLB ITLBPTW

L1-I$

L1-D$ptw_dcache

lsu_load

lsu_store

Fig. 6. AutoSVA verifies several modules in a hierarchy in Ariane. By testing at the
MMU module level (blue box), AutoSVA revealed Bug1.

ptw_dcache: ptw_req −out> dcache_res
ptw_req_val = req_port_o.data_req
ptw_req_ack = req_port_i.data_gnt
dcache_res_val = req_port_i.data_rvalid
dtlb_ptw: dtlb −in> ptw_update
dtlb_active = ptw_active_o
dtlb_val = enable_translation & dtlb_access_i & dtlb_hit_i
dtlb_ack = !ptw_active_o
[riscv::VLEN-1:0] dtlb_stable = dtlb_vaddr_i
[riscv::VLEN-1:0] dtlb_data = dtlb_vaddr_i
ptw_update_val = ptw_update_o.valid | ptw_error_o
[riscv::VLEN-1:0] ptw_update_data = update_vaddr_o
mem-engine_noc: noc1buffer_req −in> noc1buffer_enc
[MSHR_ID:0] noc1buffer_req_transid = noc1buffer_req_mshrid
[MSHR ID:0] noc1buffer_enc_transid = noc1buffer_enc_mshrid

Fig. 7. AutoSVA annotations to define PTW’s outgoing transaction to the data cache
(ptw dcache) and incoming transaction from the DTLB-miss interface (dtlb ptw), and
OpenPiton buffer’s incoming transaction from Mem Engine towards NoC1 encoder (val
and ack attributes match interface names).

IV. EVALUATING THE AUTOSVA FRAMEWORK

We utilize multiple metrics to evaluate AutoSVA: (1) its
ability to find bugs, both known (open issues) and new bugs;
(2) the speed of bug discovery, based on tool runtime and
trace length; (3) amount of engineering effort, measured in
time spent writing the transaction annotations; and (4) bug-fix
confidence, whether the bug-fix leads to a proof or new CEX.

We study these metrics in mature, taped-out, open-source
hardware projects: 64-bit RISC-V Ariane Core [1] and the
OpenPiton manycore framework [2]. We have selected 7 RTL
modules that are critical for forward-progress and thus require
exhaustive testing. Table III lists these modules as well as
the outcome of formally verifying them using testbenches
generated by AutoSVA. These outcomes consist of proofs and
bugs, demonstrating that AutoSVA is useful and effective at
generating properties and models to verify forward progress.
We also demonstrate AutoSVA for early-stage verification by
applying it to a new unit, Mem Engine, which connects to
OpenPiton’s NoC by reusing its encode/decoder buffers.

AutoSVA supports several FV tools, so we elect to perform
evaluations using JasperGold 2015.12. Additionally, to check
that AutoSVA properties are compatible with system-level
simulation, we bind the property files to the in-place testbench
using VCS-MX 2018.09.

Applying the AutoSVA language to RTL modules: A
key component of AutoSVA is its transaction abstraction that
is broad enough to apply to most RTL interface styles and
specific enough to generate useful properties. Fig. 7 presents

TABLE III
RTL MODULES TESTED WITH AUTOSVA. ARIANE MODULES ARE INDICATED WITH

A, AND OPENPITON WITH O

RTL Module Result

A1. Page Table Walker (PTW) 100% liveness/safety properties proof

A2. Trans. Look. Buffer (TLB) 100% liveness/safety properties proof

A3. Memory Mgmt. Unit (MMU) Bug found and fixed −> 100% proof

A4. Load Store Unit (LSU) Hit known bug (issue #538)

A5. L1-I$ (write-back) Hit known bug (issue #474)

O1. NoC Buffer Bug found and fixed −> 100% proof

O2. L1.5$ (private) NoC Buffer proof, other CEXs

a few examples of how AutoSVA can be applied to a wide
range of interfaces based on common possible scenarios.

Single Ongoing Transaction: When there is only one on-
going transaction in a module, it can be modeled simply by
not defining the transid attribute, which is the case for the
ptw dcache and dtlb ptw transactions in Fig. 7. This principle
works for both incoming and outgoing transactions.

Multiple Outstanding Transactions: When transactions can
be in-flight simultaneously, it can be modeled by annotat-
ing the tracking field with transid, e.g. mshrid for mem-
engine noc. Tracking requests allows AutoSVA reasoning
about integrity of transid and data fields. If requests are not
tracked, AutoSVA still checks that there are no more responses
than requests and that every transaction eventually finishes.

No Ack signal: When an interface does not have an ack
signal but the module cannot always accept new requests,
AutoSVA allows defining ack by reasoning about other signals.
In the case of dtlb ptw, the ack field is defined based on the
active signal, that indicates when the PTW is busy. Defining
stable alongside ack means that AutoSVA will model the
payload to remain stable until the request is ack’ed.

Results: Table III presents the 7 Ariane and OpenPiton
modules that were tested using FTs. AutoSVA generated a total
of 236 unique properties based on 110 LoC of annotations.

First, FTs of Ariane’s PTW and TLB resulted in 100% of
the properties being proven at unit-level after 30 minutes of
human effort to define the correct transactions. Next, the MMU
FT was set up after 10 minutes of adding a new transaction and
reusing the properties of its submodules’ FTs. These results
demonstrate that AutoSVA is quick to use and effective at
verifying forward progress in control-critical modules.

Fig. 6 shows the hierarchy of the Ariane modules we have
tested. The MMU FT (blue) checks that every request from
the LSU eventually receives a response, and that no response
occurs without a prior request. Before it uncovered a real bug,
AutoSVA found an interesting CEX: an ITLB miss was never
filled because the PTW was always busy with DTLB misses,
i.e. DTLB has static priority over ITLB. This fairness problem
cannot happen in practice since one instruction cannot do
many DTLB lookups. Since the trace was quick (<1s) and
short (<4 cycles), it was straightforward to identify the cause
of the CEX and add an assumption to remove it.

Bug1. Ghost Response on MMU: The next CEX uncovered
a bug that was triggered when the MMU receives a misaligned
request from the LSU. The MMU responds immediately with
a bad alignment response, but the DTLB still misses and the
PTW is activated (bad behavior). In the case of a page fault, the
MMU generates a second ”ghost” response to the LSU, raising
an exception. This bug was found by the FV tool in less than
a second, producing a 5-cycle trace that allowed us to quickly
identify the problem and produce a bug-fix (masking the PTW
request with the misaligned signal) with high confidence, as
the formal tool found a proof in few seconds for the previously
failing assertion. In 5 minutes, the MMU FT proof-rate was
100%. The Ariane maintainers confirmed the bug and the fix.

Hitting Known Bugs: The LSU FT hit (in 1 second) a bug
that was recently discovered on a long FPGA run: an ongoing
load hits an exception caused by a later load. The Ariane
maintainers welcomed a FT where they could validate that
the bug-fix solves the problem and does not break anything
else. Similarly, the L1-I$ FT was able to hit a reported bug.

Bug2. Deadlock in NoC Buffer: AutoSVA found a deadlock
bug in an underdeveloped part of Mem Engine that connects to
the OpenPiton NoC. Since the interfaces mostly matched the
AutoSVA language, the FT was generated with just 3 lines of
code (shown in mem-engine noc at Fig. 7). The first CEX to
the liveness assertion revealed a bug that arises from the reuse
of the NoC buffer from the L1.5$ for Mem Engine The buffer
assumes that the input does not drive more requests than the
number of buffer entries, which is violated in Mem Engine.
After fixing the bug (adding a ”not-full” condition to the ack
signal), the formal tool resulted in a proof.

Lastly, the FT of OpenPiton’s L1.5$ showed that the condi-
tion added to the NoC buffer did not break the properties for
its buffer instance. Other properties, e.g. that every cache miss
is eventually filled, showed CEXs due to under-constraints
in the message types. AutoSVA provides the FT foundation
that the L1.5$ designer can refine with assumptions to remove
spurious CEXs. The testbench can also be extended with more
assertions to achieve complete functional verification.

V. RELATED WORK

Early works focused on developing methods for formal
verification of RTL correctness [4], [13], [14]. These include
model checking, which relies on SAT solvers or BDDs, and
Assertion-Based Verification (ABV), which builds on top of
model checking to verify control logic, design interfaces, and
data integrity. The emergence of SVA [11] popularized ABV
for verification engineers [16]. More recent work focuses
on generating SVA from a higher level language [10], [12]:
RTLCheck verifies RTL pipeline implementations against their
memory consistency model (MCM) axiomatic specifications;
ILA generates a Verilog model of the design from the ILAng
functional specification, and compares it against the RTL
implementation [10]. Although these methods automatically
generate SVA, defining high-level models and matching them
to RTL signals still require significant effort and knowledge,
which may discourage hardware designers from using them.

VI. CONCLUSION

This work presents AutoSVA, a tool to automatically gener-
ate testbenches for unit-level FV. Based on annotations made
in the signal declaration section of an RTL module, AutoSVA
generates liveness and safety properties about control logic to
verify forward-progress. Thus, hardware designers can verify
their designs at unit-level without requiring FV expertise and
with the minimal effort of writing RTL module interface
annotations. This pays off quickly, as performing FV early can
save significant debugging time during system-level simulation
and increase designer confidence that the system will not hang.
We have shown that AutoSVA is effective with an evaluation
on widely used open-source HW projects. This discovered
bugs and provided proofs of 7 control-critical RTL modules.
AutoSVA generated a total of 236 unique properties based
on 110 LoC of annotations. These are included in the open-
source repository of this work.1 We envision AutoSVA to
become a standard language to define RTL modules’ interface
expectations.

ACKNOWLEDGMENTS

We thank Aarti Gupta for her useful advice. This material
is based on research sponsored by the Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement No. FA8650-18-2-7862. 2

REFERENCES

[1] “RISC-V Ariane core (CVA6),” https://github.com/openhwgroup/cva6.
[2] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba, and

L. Benini, “OpenPiton+Ariane: The first open-source, SMP Linux-booting RISC-
V system scaling from one to many cores,” in Computer Architecture Research
with RISC-V, CARRV, vol. 19, 2019.

[3] J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li, A. Lavrov, T. M.
Nguyen, Y. Fu, F. Zaruba et al., “BYOC: a ’bring your own core’ framework for
heterogeneous-ISA,” in ASPLOS’25, 2020, pp. 699–714.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in International conference on tools and algorithms for the construction
and analysis of systems. Springer, 1999, pp. 193–207.

[5] J. Buckingham, “Formal for designers,” in Agile Test Driven Dev. for ASIC, 2016.
[6] I. Cadence Design Systems, “Jaspergold apps user’s guide,” 2015.
[7] ——, “Jaspergold engine selection guide,” 2016.
[8] E. Cerny, S. Dudani, J. Havlicek, D. Korchemny et al., SVA: the power of assertions

in SystemVerilog. Springer, 2015.
[9] C. Cumming, “SystemVerilog Assertions - best known practices for simple SVA

usage,” SNUG Silicon Valley, 2016.
[10] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,

“Instruction-level abstraction (ILA): A uniform specification for system-on-chip
verification,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 24, no. 1, pp. 1–24, 2018.

[11] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language, IEEE 1800-2012 Std., 2013.

[12] Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer, “RTLCheck: Verifying
the memory consistency of RTL designs,” in 2017 50th Annual IEEE/ACM MICRO,
2017, pp. 463–476.

[13] K. L. McMillan, “Symbolic model checking,” in Symbolic Model Checking.
Springer, 1993, pp. 25–60.

[14] Ping Yeung and K. Larsen, “Practical assertion-based formal verification for SoC,”
in 2005 Intl. Symposium on System-on-Chip, 2005, pp. 58–61.

[15] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end verification of processors with
ISA-formal,” in CAV, S. Chaudhuri and A. Farzan, Eds. Springer, 2016, pp. 42–58.

[16] E. Seligman, T. Schubert, and M. A. K. Kumar, Formal verification: an essential
toolkit for modern VLSI design. Morgan Kaufmann, 2015.

[17] S. Sutherland, “Who put assertions in my RTL code? And why? How RTL design
engineers can benefit from the use of sva,” SNUG Silicon Valley, pp. 1–26, 2015.

[18] C. Wolf, “SymbiYosys,” https://github.com/YosysHQ/SymbiYosys.

1https://github.com/PrincetonUniversity/AutoSVA
2The U.S. Government is authorized to reproduce and distribute reprints for Gov-

ernmental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied,
of AFRL and DARPA, or the U.S. Government.

