
SMAPPIC: Scalable Multi-FPGA Architecture
Prototype Platform in the Cloud

Grigory Chirkov
Princeton University

Princeton, USA
gchirkov@princeton.edu

David Wentzlaff
Princeton University

Princeton, USA
wentzlaf@princeton.edu

ABSTRACT
Traditionally, architecture prototypes are built on top of FPGA in-
frastructure, with two associated problems. First, very large FPGAs
are prohibitively expensive for most people and institutions. Sec-
ond, the burden of FPGA development adds to an already uneasy
life of researchers, especially those who focus on software. Large
designs that do not fit into a single FPGA exacerbate these issues
even more. This work presents SMAPPIC – the first open-source
prototype platform for shared memory multi-die architectures on
cloud FPGAs. SMAPPIC leverages the OpenPiton/BYOC infrastruc-
ture and AWS F1 instances to make FPGA-based prototypes of
System-on-Chips, processor cores, accelerators, cache subsystems,
etc., cheap, scalable, and straightforward. SMAPPIC enables many
use cases that are not possible or significantly more complicated in
existing software and FPGA tools. This work has the potential to
accelerate the rate of innovation in computer engineering fields in
the nearest future.

CCS CONCEPTS
• Hardware → Simulation and emulation; Reconfigurable
logic and FPGAs; • Computer systems organization → Multi-
core architectures; Heterogeneous (hybrid) systems.

KEYWORDS
Modeling, FPGA, cloud, multi-die, interconnect, multicore, hetero-
geneity

ACM Reference Format:
Grigory Chirkov and DavidWentzlaff. 2023. SMAPPIC: Scalable Multi-FPGA
Architecture Prototype Platform in the Cloud. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3575693.3575753

1 INTRODUCTION
The approaching demise of Moore’s Law [25] puts the task of opti-
mizing computation on the shoulders of system-level researchers:
computer architects, compiler engineers, operating system and run-
time developers, etc. Correspondingly, the number of papers in the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575753

top venues in these fields has increased dramatically over the last
20 years [1–3]. One can imagine a future where all the advances in
computation come purely from clever new techniques and features
designed by these researchers. However, most of such work de-
mands working on futuristic, currently nonexistent hardware. This
highlights the importance of a cheap, fast, scalable, and easy-to-use
prototyping infrastructure.

Traditionally, architecture prototypes are built on top of Field-
Programmable Gate Array (FPGA) infrastructure. This approach has
two significant associated problems. First, FPGA development is a
complicated task that requires deep knowledge of not only Register
Transfer Level (RTL) but also the details and physical constraints of
the chosen FPGA platform. Many researchers (especially those who
focus more on software aspects) would rather spend their time and
effort on something closer to their interests. Second, FPGAs needed
for large systems’ prototypes must be bought by researchers for a
significant price (starting from $5000 or $20000 for a set of four) [62].
Therefore, independent researchers cannot afford to use FPGAs at
all, and large entities cannot afford to scale out FPGA infrastructure,
i.e., evaluate multiple systems in parallel or use multiple FPGAs for
a single prototype.

Moreover, the end of Moore’s Law gradually slows down the
transistor density scaling and forces designers to implement increas-
ingly larger designs each year [33]. Correspondingly, prototypes
are also becoming larger and no longer fit into a single FPGA. Par-
titioning prototypes across multiple FPGAs further exacerbates
both price and complexity issues. Emulation systems like Synopsys
Zebu [55] solve the complexity problem but only at the cost of even
more expensive hardware.

The current COVID-19 pandemic makes FPGAs even less acces-
sible. Working with an FPGA often requires physical access to the
hardware, which can be unavailable due to pandemic restrictions
like lockdowns and Work-From-Home orders. Moreover, due to the
pandemic-induced chip shortage, purchasing FPGAs is challenging
even with the necessary funds. For example, lead times for large
FPGAs from Xilinx now exceed half a year [62].

However, FPGAs have debuted as offerings from multiple pub-
lic cloud providers in the past five years, including Amazon Web
Services (AWS) [19, 32, 43]. This development presents a unique
opportunity for researchers to embrace FPGA prototyping or mi-
grate their flow from existing on-premise solutions to cloud FPGAs,
enabling them to run thousands of instances in parallel or to dis-
tribute large designs across multiple FPGAs for a modest price.
Such a prototype also presents the opportunity to use large datasets
available only in the cloud or have an FPGA prototype interacting
with cloud-only services like complex Function-as-a-Service (FaaS)
pipelines. Computer architecture, operating systems, and compilers

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

733

https://doi.org/10.1145/3575693.3575753
https://doi.org/10.1145/3575693.3575753
https://doi.org/10.1145/3575693.3575753
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575753&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

FPGA0

Node 0
Tile
0

Tile
1

Tile
2

Tile
4

Tile
5

Tile
6

Tile
3
Tile
7

Tile
8

Tile
9

Tile
10

Tile
11

(a) Classic 1x1x12 configuration
for single-node targets.

FPGA0
Node 0
Tile
0

Tile
1

Node 1
Tile
0

Tile
1

Node 3
Tile
0

Tile
1

Node 2
Tile
0

Tile
1

(b) Cost-efficient 1x4x2 configu-
ration for small targets.

FPGA0

Node 0
Tile
11

Tile
10

Tile
9

Tile
7

Tile
6

Tile
5

Tile
8

Tile
4

Tile
3

Tile
2

Tile
1

Tile
0

FPGA1

Node 1
Tile
20

Tile
21

Tile
22

Tile
16

Tile
17

Tile
18

Tile
23
Tile
19

Tile
12

Tile
13

Tile
14

Tile
15

FPGA2

Node 2
Tile
27

Tile
26

Tile
25

Tile
31

Tile
30

Tile
29

Tile
24
Tile
28

Tile
35

Tile
34

Tile
33

Tile
32

FPGA3

Node 3
Tile
36

Tile
37

Tile
38

Tile
40

Tile
41

Tile
42

Tile
39
Tile
43

Tile
44

Tile
45

Tile
46

Tile
47

(c) 4x1x12 configuration for multi-node targets with large nodes.

FPGA0
Node 0
Tile
1

Tile
0

Node 1
Tile
2

Tile
3

Node 3
Tile
6

Tile
7

Node 2
Tile
5

Tile
4

FPGA1
Node 4
Tile
9

Tile
8

Node 5
Tile
10

Tile
11

Node 7
Tile
14

Tile
15

Node 6
Tile
13

Tile
12

FPGA3
Node 12
Tile
25

Tile
24

Node 13
Tile
26

Tile
27

Node 15
Tile
30

Tile
31

Node 14
Tile
29

Tile
28

FPGA2
Node 8
Tile
17

Tile
16

Node 9
Tile
18

Tile
19

Node 11
Tile
22

Tile
23

Node 10
Tile
21

Tile
20

(d) 4x4x2 configuration for multi-node targets with small nodes.

Figure 1: SMAPPIC generates optimized prototypes for var-
ious targets. Configurations are denoted in AxBxC format,
where A is the number of FPGAs, B is the number of nodes
per FPGA, and C is the number of tiles per node.

classes can also use cloud FPGA platforms’ on-demand scale-out
nature for educational purposes beyond what a single academic
institution can purchase.

This paper presents Scalable Multi-FPGA Architecture Prototype
Platform in the Cloud (SMAPPIC) – the first open-source1 proto-
type platform for shared memory multi-die architectures on cloud
FPGAs. SMAPPIC is designed with three main goals: ease of use,
cost-effectiveness, and scalability. They all are achieved through
a modular, hierarchical, and parametrizable structure based on a
cloud FPGA backend.

SMAPPIC is a ready-to-use solution that makes architectural
FPGA prototyping easy and accessible to researchers from various
computer science and computer engineering fields. Researchers
do not need to be experts in FPGA development to implement
their prototypes, and the modular design of SMAPPIC allows them
to make RTL modifications with non-invasive changes. Moreover,
many software studies can be performed by tuning built-in platform
parameters without the need to change RTL code altogether. SMAP-
PIC’s cloud FPGA backend makes it accessible and cost-effective,
allowing users to pay for infrastructure per hour.

Each prototype in SMAPPIC contains one or more separate
nodes, where each node represents a single chip or die of the target
system. Nodes can be distributed across multiple target FPGAs; they
can be independent and represent separate systems or be merged
with newly designed inter-node interconnect into one large system.
SMAPPIC configurations are described in AxBxC notation, where
A is the number of FPGAs in the prototype, B is the number of
nodes per FPGA, and C is the number of tiles per node. Fig. 1 shows
the example SMAPPIC hierarchies:

(1) Fig. 1a shows a classic 1x1x12 configuration with a single
prototype that implements one node in one FPGA.

(2) Fig. 1b shows a cost-efficient 1x4x2 configuration. Such con-
figuration allows modeling multiple systems with different
parameters in one FPGA to optimize utilization and cost-
efficiency.

(3) Fig. 1c shows a 4x1x12 configuration. It represents a cache-
coherent multi-node system with 4 large 12-core nodes.

(4) Fig. 1d shows a 4x4x2 configuration. It represents a cache-
coherent multi-node system with 16 small 2-core nodes.

We chose the BYOC/OpenPiton [10, 11] framework as SMAP-
PIC’s node foundation and AWS EC2 F1 instances as a target FPGA
infrastructure. Together, they provide all the necessary features
needed to achieve our design goals:

(1) The BYOC framework provides a modular and configurable
RTL model of a heterogeneous computing platform with
Network-On-Chip (NoC) interconnect and scalable coherent
cache subsystem inside each node. Various research groups
have already integrated Ariane [65], OpenSPARC T1 [37],
ao486 [39], PicoRV32 [60], AnyCore [17], BlackParrot [41]
cores as well as NVDLA [34] and MIAOW GPU [8] accel-
erators into BYOC. These computational cores can be used
out of the box without any modifications. Moreover, the
Transaction Response Interface (TRI) allows for fast and
easy integration of other new computation cores.

1Source code: https://parallel.princeton.edu

734

https://parallel.princeton.edu

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

PCIe x16

Host PCFPGA

Hard Shell

AXI4 AXI-Lite
(x3)

Custom logic

Switches,
LEDs,
reset

AXI4AXI4

DDR4
controller

DDR4
controller

(x3)

AXI4

PCIe
driver

Host
program

To
onboard
DRAM

To
onboard
DRAM

Figure 2: F1 instances organization. F1 FPGA contains two
partitions: Custom Logic (CL) and Hard Shell (HS). Users can
fully customize CL; HS is fixed and provided by AWS. All
communication with the host happens through HS, where
requests and responses are converted from the host-FPGA
PCIe connection to AXI4/AXI-Lite interfaces and back.

(2) AWS EC2 F1 instances provide infrastructure for cheap,
scalable, on-demand FPGA prototyping. Four independent
DRAM interfaces in F1 make it possible to pack up to four
nodes into one FPGA. At the same time, the F1 instance’s abil-
ity to perform direct FPGA-to-FPGA communication through
the PCIe interface makes SMAPPIC’s coherent inter-node
interconnect possible.

There are many unique use cases that are impossible or sig-
nificantly harder without SMAPPIC. We discuss some of them in
this paper, including large-scale multi-node architecture model-
ing, accelerator evaluation and verification, hardware/software co-
development, in situ studies of a custom architecture interaction
with a cloud infrastructure, cost-efficient architecture modeling,
remote work, education, and more.

Our contributions include:
• The first open-source prototype platform for shared memory
multi-node architectures on cloud FPGAs

• The first open-source RISC-Vmulti-node systemwith unified
memory

• The first open-source 48-core 64-bit RISC-V system with
coherent memory

• The first demonstration of full-stack Linux running on a
48-core RISC-V system in NUMA mode

• The first comparison of architecture modeling methods in
the cloud with respect to cost-efficiency

• Demonstration of custom prototype interacting with public
cloud services

2 BACKGROUND
2.1 AWS EC2 F1 Infrastructure
AWS debuted EC2 F1 instances as an option in its public cloud
in November 2016 as a way to offer its customers customizable
acceleration capabilities. AWS currently offers three F1 instances:
f1.2xlarge, f1.4xlarge, and f1.16xlarge; their parameters and prices
are listed in Table 1. Overall, users can get up to 8 Xilinx VU9P [64]
FPGAs inside one instance. Each hour of a single FPGA usage costs
$1.65.

Last-Level
Cache

OpenSPARC
T1 Core

Last-Level
Cache

BYOC
Private
Cache

PicoRV32
Core

BYOC
Private
Cache

NoC
Routers

BYOC Memory System

NoC
Routers

Last-Level
Cache

Ariane
RISC-V Core

BYOC
Private
Cache

NoC
Routers

Last-Level
Cache

ao486
Core

BYOC
Private
Cache

NoC
Routers

DDR Memory

Ethernet

PS/2

UART

VGA Framebuffer

Wishbone SDHC

Chipset
NoC

Crossbars

Transaction-Response
Interface

Figure 3: BYOC principal diagram (reproduced from [10]).
BYOC has a modular open-source design, configurable cache
subsystem, and a wide range of integrated cores and ISAs.

Fig. 2 shows a logical representation of F1 instances [42]. FPGAs
in F1 are divided into two parts: 1) A Hard Shell (HS) provided by
AWS that must be included in the final FPGA image, and 2) Custom
Logic (CL), where developers have complete control over instanti-
ated logic. Developers can access four DDR4 memory controllers
and three AXI-Lite interfaces for logic configuration and manage-
ment per FPGA. Data movement to/from the instance is performed
through two AXI4 interfaces: one inbound and one outbound. The
HS converts these AXI4 signals to/from PCIe Gen3 x16 connections.
Depending on the target address, the outbound AXI4 request is
routed to one of the FPGAs connected to the host or to the host
itself.

The described setup is easy to recreate locally, given sufficient
funds. Similar boards can be bought directly from Xilinx [62] or
other vendors [12]. HS uses Xilinx XDMA IP under the hood, which
is provided with each copy of Xilinx Vivado tools [63]. However,
we estimate that the upfront cost of a similar system with a single
FPGA (including server, FPGA, and FPGA memory) is about $8000,
which can be too large of an investment for many researchers,
especially if sporadically used.

2.2 BYOC and OpenPiton
BYOC [10] is a hardware framework for heterogeneous-ISA re-
search. It supports the connection of cores with different ISAs and
microarchitectures as well as accelerator integration. The high-level
design of BYOC is shown in Fig. 3.

BYOC is built on top of OpenPiton [9] framework and Piton
processor [31] and provides a modern, tiled manycore design with
a cache coherence protocol and a Network-on-Chip (NoC) intercon-
nect scalable to up to 500 million cores. BYOC’s cache subsystem is
configurable and allows choosing different cache sizes and associa-
tivities. Users can select one of the ten provided core models. No-
tably, the framework already integrates Ariane [65], AnyCore [17],
BlackParrot [41], OpenSparcT1 [37], PicoRV32 [60], and ao486 [39]
cores. If this choice is not enough for the users, they can choose
to connect their design using the Transaction Response Interface
(TRI).

TRI is the gateway between a core and the central part of BYOC:
its memory subsystem (see Fig. 3). This interface and BYOC Pri-
vate Cache (BPC) were designed to isolate cores from details of

735

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

Table 1: Available AWS EC2 F1 instances [44].

Instance f1.2xl f1.4xl f1.16xl
#vCPUs 8 16 64
Host Memory 122GB 244GB 976GB
Storage 470GB 940GB 3760GB
#FPGAs 1 2 8
FPGA Memory 64GB 128GB 512GB
Pricing $1.65/hr $3.30/hr $13.20/hr
Hardware price ≈ $8000 ≈ $16000 ≈ $64000

the coherence protocol in the underlying cache subsystem, thereby
simplifying the integration of new compute units (cores) into BYOC.
BPC can work as either a private L1 or L2 cache. BPCs are intercon-
nected with each other and slices of distributed shared last-level
cache (LLC) through three NoCs. The LLC also uses the NoCs to
interact with the memory controller and peripherals, all located
inside the chipset.

The BYOC framework has an open-source codebase and is writ-
ten in Verilog and SystemVerilog. This modular and configurable
design makes it an excellent platform for experimenting and de-
veloping new hardware/software features; SMAPPIC leverages it
to provide the same features in its nodes. At the same time, BYOC
provides only limited FPGA prototyping capabilities without multi-
node support.

3 ARCHITECTURE
A SMAPPIC prototype consists of one or several nodes; each node
represents a single chip or die of the target system. Nodes can be
independent of each other and implement separate instances of
the prototyped design, or they can be connected with SMAPPIC’s
specially designed inter-node interconnect to build a prototype of
a single large shared memory multi-node system. We measured the
inter-FPGA round-trip latency on the PCIe bus in an F1 instance to
be about 1250 nanoseconds. At a typical FPGA frequency of about
100MHz, this latency equals 125 cycles, which is the same order
of magnitude as the inter-socket latency in a typical multi-socket
system. Therefore, a multi-node system can be modeled either by
putting all nodes into one FPGA or by distributing nodes across
multiple FPGAs.

The nodes in our implementation are separate BYOC instances.
However, the inter-node interconnect does not rely on any funda-
mental properties of BYOC, and BYOC can be replaced with any
node model with multi-node capabilities. We chose BYOC because
it strengthens SMAPPIC’s advantages: modularity, configurability,
and ease of use.

3.1 Inter-node Interconnect
SMAPPIC’s inter-node interconnect is designed to make large-scale
multi-node prototypes possible. It binds together nodes located in
the same FPGA and different FPGAs. To achieve this, the intercon-
nect encapsulates traffic between nodes into AXI4 write requests.
This solution allows connecting nodes on the same FPGA using
the AXI4 crossbar and nodes on different FPGAs using the AXI4-
PCIe transducer provided in Hard Shell. The encapsulation does not

FPGA 3

Node 3

FPGA 0

Node 0

Tile
0

Tile
1

Tile
2

Tile
3

Tile
4

Tile
5

Tile
6

Tile
7

Tile
8

Chipset

Inter-node bridge: send
• aw channel: transfer info

(destination node-ID, source
node-ID, valid bits for flits)

• w channel: three NoC flits
• ar channel: request for

credits return

PCIe
outbound

PCIe
inbound

AXI4 to memory
interface

Tile
2

Tile
5

Tile
8

PCIe transfer

Inter-node bridge: receive
• b channel: acknowledgement
• r channel: credits to be

returned

1

2

3

5

6

7

9

10

AXI4->PCIe conversion PCIe->AXI4 conversion

AXI4 outbound AXI4 inbound

4
8

FPGA 1

Node 1

FPGA 2

Node 2

Figure 4: SMAPPIC in 4x1x12 configuration. Inter-node NoC
packets are first routed towards Tile 0, then pushed out in
the northbound direction into the inter-node bridge, where
they are encapsulated into AXI4 requests and tunneled in
the PCIe bus to other nodes in other FPGAs.

change the traffic and does not significantly rely on packet struc-
ture, and the BYOC can be replaced with any other node model
with inter-node capabilities fairly easily.

Fig. 4 shows the high-level design of SMAPPIC in a 4x1x12 con-
figuration. Each node is located in its own FPGA and communicates
with other nodes through inbound and outbound AXI4 interfaces.
We will go through an example of what happens during a BPC
cache miss to show the functionality of SMAPPIC. Blue numbers
and lines in Fig. 4 schematically show the sequence of events and
NoC communication.

• Stage 1: a core on node 0 in tile 3 does a memory read that
causes L1 and BPC cache misses. BPC issues a read request
to the cache line’s home LLC slice in this case. The homing
mechanism in BPC decides where the cache line’s home is.
The original BYOC design supports multi-chip configuration
through a special hardware/software mechanism called Co-
herence Domain Restriction [22]. Unlike BYOC, SMAPPIC’s

736

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

NoC
deserializer

Management
module

NoC
serializer

Request

Data

Response

Data

Request

Response

Data

Request

Data

Response

ar channel

r channel

aw channel

w channel

b channel

AXI4 interface

Read
engine

NoC
input

NoC
outputWrite

engine

Figure 5: NoC-AXI4 bridge transduces requests from BYOC
NoC protocol to AXI4 protocol. The bridge buffers requests
for non-blocking operation and aligns requests to a 64-byte
boundary to conform to AXI4 protocol requirements.

homing mechanism was changed to distribute cache lines
across all nodes in the system and work out of the box with-
out software support. The read is local if the cache line’s
home slice is located in the same node. However, in our ex-
ample, the core is in node 0, and the home slice is in node 3,
making this request inter-node.

• Stage 2: NoC routers are programmed to route inter-node
packets into tile 0, then in the northbound direction, where
they leave the node and enter the inter-node bridge specifi-
cally designed to encode NoC packets into outgoing AXI4
requests and vice versa.

• Stage 3: A NoC packet is encapsulated into AXI4 write re-
quests. The request’s address encodes the destination node
ID, source node ID, and valid bits for flits encoded in write
data. To guarantee the absence of deadlocks in the system,
the NoCs must have credit-based flow controls. To return
credits, the sending side periodically issues an AXI4 read
request to the receiving side and gets the number of returned
credits in response.

• Stages 4-5: The request is converted into PCIe transfer inside
HS and sent to the other FPGA. This PCIe traffic goes directly
from FPGA to FPGA and does not use the host CPU.

• Stages 6-7: The response from the home slice is sent back to
node 0 in the form of another PCIe transfer.

• Stage 8: The PCIe transfer is converted into an AXI4 request
inside HS.

• Stage 9: An AXI4 request is decoded inside the inter-node
bridge. The valid bits are taken from the request address,
and NoC flits are taken from the request data. The request’s
address also contains the source node-ID, which is used for
credit accounting. If the inter-node bridge gets an AXI4 read
request, it returns the credits in response.

• Stage 10: Response is routed back to the original core in tile
3 on node 0.

3.2 Memory Interfaces
The F1 infrastructure provides developers access to up to four
DRAM interfaces. Developers are expected to use AXI4 interfaces

Interrupt
controller

Interrupt
packetizer

Interrupt
depacketizerCore

NoC

Interrupt wire

Interrupt wire

Figure 6: Interrupt packetizer and depacketizer enable send-
ing interrupts across node boundaries.

for read and write requests, and BYOC’s original memory controller
is incompatible with this protocol.

To manipulate the memory interfaces, we designed a NoC-AXI4
memory controller that transduces requests from the native NoC
protocol to the AXI4 interface and sends responses back via the
NoC to the requesting tile. Its high-level design is shown in Fig. 5.
Incoming requests from the NoC are first deserialized and then
forwarded to the management module. There, requests are buffered
to enable non-blocking functionality and higher throughput. Re-
quests are then steered into the corresponding engine: memory
reads into the read engine and memory writes into the write en-
gine. The engines assign an AXI4-ID to each request and save the
Miss Status Handling Register (MSHR), the ID-MSHR mapping,
the origin of the request in the system, and other miscellaneous
information. The request’s address and data (in the case of a write)
are then aligned to a 64-byte boundary to fulfill the AXI4 protocol
requirements. Upon response arrival, ID-MSHR mapping is used to
restore the initial request’s MSHR. If it is a read response and the
original request is smaller than 64 bytes, the necessary portion of
bytes is selected. The response and data (in case of a read) are then
pushed into the NoC serializer, after which they leave the memory
controller.

3.3 RISC-V Interrupt Controller
Another essential part of SMAPPIC is its RISC-V interrupt controller.
We want to make the transition to our platform as seamless for
researchers as possible. With the growing popularity of RISC-V in
the community, it was important for us to have this functionality
available out of the box.

In the RISC-V specification [5], cores are notified about pending
interrupts by asserting a wire going straight from the interrupt
controller into the core. This specification lacks scalability because
a) in the case of a manycore system, a wire goes across the whole
node and uses significant routing resources and affects the timing
of the design, and b) in the case of a multi-node system, it is difficult
or impossible to route a wire across node boundary.

To deal with this problem, we designed an interrupt packetizer
and depacketizer. Fig. 6 shows their functionality. The interrupt
packetizer scans the interrupt controller’s outputs, and when they

737

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

Table 2: Prototyped System Parameters

Instruction set RISC-V 64-bit
Operating system Linux v5.12
Frequency 100MHz
Core Ariane
Core pipeline In-order, 6 stages
Branch history table entries 128
ITLB entries 16
DTLB entries 16
L1D cache 8 KB, 4 ways
L1I cache 16 KB, 4 ways
BPC cache 8 KB, 4 ways
LLC cache slice 64 KB, 4 ways
DRAM latency 80 cycles
Inter-node round-trip latency 125

change, it notifies the appropriate core about the change by sending
a NoC packet. On the core side, the interrupt depacketizer sniffs the
network traffic, and when an interrupt packet arrives, the interrupt
wires are asserted or deasserted depending on the packet contents.

3.4 I/O Interfaces
3.4.1 UART and Serial Interfaces. UART is an essential interface
for SMAPPIC: it is used for all the external interactions like loading
tests into memory and console I/O operations. However, the F1
infrastructure does not provide a UART interface to the developer.

To tackle this issue, we encapsulate UART into the AXI-lite
protocol and use one of the available AXI-Lite interfaces in F1 to
further tunnel data from the FPGA to the host. The UART to AXI-
Lite conversion is done with a Xilinx UART16550 IP [61] included
with Xilinx Vivado. Further inside the host system, we developed a
new program that creates a virtual serial device and tunnels data
from the PCIe driver into this virtual serial device.

We instantiate two UART devices inside each BYOC instance:
one with the standard baud rate of 115200 bits/second for console
interactions/instance management and one with an “overclocked”
transmission rate of around 1Mbit/second for data transmission.
We used the overclocked device to connect the prototype to the
Internet using the standard modem connection utility pppd.

3.4.2 Virtual SD Card. Like many datacenter FPGAs, the F1 FPGA
does not have an SD card slot. However, BYOC requires an SD card
controller to be able to provide a filesystem and run Linux. To solve
this problem, we introduce the notion of a “Virtual device” into
SMAPPIC. We call a device virtual if it does not physically exist in
the system; all requests to this device are instead forwarded into the
SMAPPIC system’s main memory. Virtual devices provide only the
functionality of the original device and do not model performance
properly.

Since F1 lacks an SD card slot, we make the device virtual and
map it into the top half of the FPGA’s DRAM; the remaining bot-
tom half is used for the prototype’s main memory. For SD card
initialization, we wrote a specialized Linux driver that is run on
the host system. It performs the writes to the addresses inside the
FPGA’s PCIe address space, and these writes eventually appear on

0 12 24 36

0

12

24

36

0

50

100

150

200

250

Receiver core index
Se

nd
er

 c
or

e
in

de
x

Figure 7: Inter-core latencies in multi-node prototype in cy-
cles. There are four clearly visible NUMA domains in the
system. Round-trip latency inside one domain is about 100
cycles, and across domains – 250 cycles, 2.5 times higher.

the FPGA’s inbound AXI4 bus. This way, we can inject NoC flits
inside the system. In particular, we can inject NoC packets that
target the prototype’s memory controller and perform writes in the
SD card region of memory.

3.5 Modeling Off-node Interfaces
The node’s interaction with the outside world cannot be mapped
into FPGA gates. This includes inter-node communication, memory
operations, input/output (I/O) operations, network operations, etc.
To combat this modeling challenge, we include a traffic shaper with
configurable bandwidth and latency in the inter-node bridge and
memory controller. This solution provides performance models of
interconnect and memory interfaces in addition to the functional
models described above. I/O operations are modeled only function-
ally in SMAPPIC.

4 SMAPPIC USE CASES
This section describes our vision of how SMAPPIC can be employed
for various problems.

4.1 Large-Scale Multi-node Architecture
Modeling

In our first example, we build an FPGA prototype of a 64-bit cache-
coherent RISC-V multi-node system with a total of 48 cores. Using
this prototype, we run a full-stack Linux operating system and
evaluate its’ implementation of NUMA mode in the RISC-V archi-
tecture.

738

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

3 6 12 24 48
0

500

1000

1500

2000

2500

3000 NUMA mode On Off

Threads

Ti
m

e,
 s

ec
on

ds

Figure 8: The difference in performance between NUMA-
aware and non-NUMA-aware Linux kernel running multi-
threaded integer sorting benchmark. NUMAmode reduces
runtimes by 1.6-2.8 times. The effect is especially strong with
a high thread count because of increased inter-node commu-
nication in non-NUMAmode.

We use the integrated Ariane core in this example. SMAPPIC
makes synthesizing the FPGA prototype straightforward: the user
simply specifies the preferred core type, the number of tiles per
node, the number of ndoes per FPGA, and the number of FPGAs. As
an example, we create a prototype with a 4x1x12 configuration: four
FPGAs, one node per FPGA, and 12 cores per node for a total of 48
Ariane cores. Fig. 2 shows the parameters of the prototyped system.
The FPGA image generation takes about 2 hours on a desktop
machine equipped with an Intel Core-i9 9900K CPU and requires
about 32GB of memory. Final postprocessing is done by AWS in
their datacenter and takes another 2 hours. Loading the bitstream
into FPGA takes about 10 seconds.

As a part of this case study, we run the full-stack Linux kernel in
the generated prototype. The Linux kernel works out of the box in
SMAPPIC. Non-uniform memory access (NUMA) mode has been
available for RISC-V platforms since release 5.12, and since our setup
has NUMA properties, we enabled it in the kernel configuration.
The software reads NUMA parameters from the device tree during
the boot process.

The first metric of interest for us is the communication latency
between cores. Fig. 7 shows the heatmap of round-trip latencies
between different cores in the system in cycles. The locations of
the four NUMA nodes are clearly visible in this chart: cores on
the same node have round-trip latency of about 100 cycles, and
round-trip latency for cores on different nodes is about 250 cycles,
2.5 times higher than intra-node. This number is roughly the same
for multi-socket Intel server platforms [21], which validates our
idea of modeling multi-node systems with multi-FPGA setups. The
inter-node link latency can be adjusted to represent systems with a
slower interconnect, e.g., Ampere Altra [4].

We then evaluate the real-world performance of our prototype
with an integer sorting benchmark from the NAS parallel bench-
mark (NPB) suite [7]. The benchmark uses a parallel bucket sorting
algorithm to sort a 134-million-long array of integers (NPB’s class
C input size). Fig. 8 shows the performance scaling with the number

1 2 3 4
0

200

400

600

800

1000

NUMA mode On Off

Active chiplets

Ti
m

e,
 s

ec
on

ds

Figure 9: Thread allocation effect on integer sorting bench-
mark runtime. The number of threads is fixed to 12; they
are distributed between either 1, 2, 3, or 4 active nodes. In
NUMAmode, more active nodes mean increased memory ac-
cess latency and slightly higher runtime. With NUMA mode
disabled, more active nodes mean a higher chance of thread
and data collocation on the same node and slightly better
performance.

of cores with Linux NUMA mode on versus off. NUMA mode re-
duces runtime by 1.6-2.8 times depending on the number of threads.
The difference is especially large with a high thread count; mem-
ory allocation becomes even more critical in this situation because
of the large volume of inter-node communication and associated
congestion. We also compared the scaling characteristics of the
system with a similar multi-socket server setup from Intel. We saw
a similar dynamic going from low thread count to full system usage.

Fig. 9 shows the same benchmark run in the same system, but
this time we fix the number of threads to 12 and pin them to either
1, 2, 3, or 4 nodes using the taskset utility to study how much sub-
optimal thread allocation hurts performance. Distributing threads
among more nodes in NUMA mode leads to higher average mem-
ory access latency and slightly higher runtime. Interestingly, with
NUMA mode disabled, the situation is reversed, and the perfor-
mance slightly increases when cores are spaced further apart. We
think that this happens because, with more nodes involved, there
is a higher chance that at least some of the threads and application
data are collocated on the same node.

The studies shown in this section are not possible on any
simulator or emulator currently available to researchers.
Only the SMAPPIC prototype can model benchmark runs in a large
NUMA system running full-stack Linux at speeds around 100MHz.

4.2 Accelerator Verification and Evaluation
SMAPPIC is a valuable framework for accelerator development.
It includes tools for easy accelerator integration into the node’s
architecture. Users can employ provided coherence tools to enable
fine-grained interaction between the accelerator and the rest of
the system. Superior speeds of FPGA emulation allow evaluating
and verifying the accelerator with much larger input datasets than
possible with purely software tools.

739

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

1.0 1.0

12

7.4

21

10

32

13

A: Noise generator B: Noise applier
0

5

10

15

20

25

30 Mode
SW
1
2
4

Benchmark

Sp
ee

du
p

Figure 10: Performance evaluation of the GNG accelerator in
SMAPPIC. The speedup is calculated relative to the software
implementation. Four execution modes are compared: soft-
ware (SW), 1 number per fetch (1), 2 numbers per fetch (2),
and 4 numbers per fetch (4). The hardware implementation
works much faster, especially with combined fetches.

As an example, we built a prototype of a CPU with an integrated
Gaussian Noise Generator (GNG) accelerator [28] from the Open-
Cores project [36]. Gaussian noise is widely used in communica-
tion channel testing, molecular dynamics simulation, and financial
modeling [27]. The accelerator generates noise using the random
numbers from the Tausworthe Generator [59]. It took around 1.5
hours of a graduate student’s work to do the initial integration and
debugging. We use a SMAPPIC 1x1x2 configuration for simplicity,
but users can quickly scale this prototype by only changing com-
mand line options passed to build scripts. Tile 0 contains the Ariane
core, and tile 1 contains the GNG.

To fetch a new number from the GNG, Ariane issues a non-
cacheable load to the accelerator’s memory address. We develop
and study two integration schemes: base and optimized. In the base
scheme, each non-cacheable load returns a single 16-bit number. In
the optimized scheme, the load returns two or four 16-bit numbers
packed into one 32-bit or 64-bit integer respectively. The optimiza-
tion replaces multiple fetch operations with only one and reduces
the number of needed loads.

After the prototype is built, users can easily evaluate and ver-
ify the accelerator with SMAPPIC’s built-in machinery. For illus-
trative purposes, we compare the accelerator’s performance with
the software implementation executed in Ariane. We execute two
benchmarks on top of Linux. Benchmark A (“Noise generator”)
generates 64MB of noise to compare software and hardware GNG
implementations. Benchmark B (“Noise applier”) converts gener-
ated noise into 8-bit integers and applies it to a 32MB long sequence
to compare two implementations in a real-life scenario.

Fig. 10 shows performance results. The accelerator significantly
decreases benchmarks’ execution times, especially when it com-
bines multiple number fetches into one request. The performance
difference is smaller in benchmark B because less of the execution
time is accelerated here. The whole process of accelerator evalua-
tion took about one graduate student’s workday from start to end,

1.0 1.0 1.0 1.0

2.4

1.0

1.9

2.2

1.6
1.4

1.2

1.8

SPMV SPMM SDHP BFS
0

0.5

1

1.5

2

2.5
Mode 1 thread MAPLE 2 threads

Benchmark

Sp
ee

du
p

Figure 11: Performance evaluation of MAPLE engine in
SMAPPIC. Speedup is calculated relative to single-thread
execution. Three execution modes are shown: single-thread,
single-thread with MAPLE engine, and 2-thread.

including accelerator integration, debugging, optimization, synthe-
sizing FPGA images, developing accelerator software, and running
benchmarks.

4.3 Hardware/Software Co-development
Many works on programming languages and operating systems
propose ideas based on slight architectural changes to existing
hardware [22, 48, 66]. Researchers from these fields want to be
able to run full-stack operating systems and be able to interact
with the hardware in real time. Due to its scalability, speed, cost,
configurability, and full-stack SMP Linux support, SMAPPIC is a
perfect tool for such work.

To demonstrate this, we reevaluate the MAPLE [38] engine in
SMAPPIC and compare it with parallel 2-thread software execu-
tion. MAPLE is an accelerator for Decoupled Access Execute pro-
grams [49]. The Execute part runs in the general-purpose core,
while theAccess part is offloaded toMAPLE.MAPLE is programmed
before the execution starts to asynchronously fetch the data from
memory and supply it to the Execute core right when needed.
This approach grants substantial performance gains in applications
with irregular memory access patterns through fine-grained soft-
ware/hardware interaction.

We use SMAPPIC’s 1x1x6 configuration with Ariane cores in
tiles 0, 1, 4, 5, and MAPLE engines in tiles 2, 3. The benchmarks and
datasets are the same as in the original work. MAPLE’s code and
integration with OpenPiton are open-sourced, so the engine works
in SMAPPIC out of the box. We would like to note that integrating
even such delicate mechanisms in SMAPPIC is easy and takes only
about a hundred lines of Verilog code [38].

Fig. 11 shows MAPLE’s performance results. The evaluation
shows that MAPLE is more efficient than the second thread in
latency-bound applications. Unsurprisingly, SMAPPIC produces
charts identical to the ones described in the original MAPLE work
because the modeled hardware is very similar. However, this case
study is interesting in another aspect.

The test execution would often hang the whole system during
our initial testing. After a couple of hours of debugging, we noticed

740

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

AWS S3

AWS Lambda

Python script
Create new

HTTP request

SMAPPIC

Nginx web-server

PHP script
S3

fetch

Proxy

S3 data

Return
response

Attach date,
return

response

HTTP
Redirect
response

HTTP

CGI

REST API

Figure 12: SMAPPIC in an experimental cloud pipeline.
SMAPPIC’s cloud nature allows for in situ cloud studies of
custom architecture’s interaction with other datacenter ser-
vices.

that the problem disappeared when each program’s thread was
pinned to some core. Eventually, we found a piece of Verilog code
inMAPLE’s design that memorizes the core ID at the execution start
and uses this information later for some operations. This design is
problematic for running programs on top of the operating system
because of the thread migration.

Interestingly, MAPLE’s designers had not seen this problem be-
fore we contacted them. Even though they used FPGA for testing
and executing tests on top of Linux as well, their FPGA was small
and could fit only two Ariane cores inside. This case provides yet
another reason why SMAPPIC helps so much with design verifica-
tion. The ability to execute tests in large prototypes on top of the
operating system at high frequencies is currently provided in only
our open-source tool.

4.4 In Situ Studies of Custom Architecture
Interaction with Cloud Infrastructure

While there are many ways to model new architectures, modeling
their interactions with existing cloud infrastructure can be chal-
lenging. Researchers that study custom cloud architectures would
greatly benefit from the ability to integrate the new hardware di-
rectly into a datacenter setting. SMAPPICmakes this task a lot easier
because the prototype is located in the cloud, runs full-stack SMP
Linux, and supports network connections via its serial interfaces.
This aspect allows users to transform their custom architectures
into first-class citizens inside the AWS infrastructure.

To prove this, we build a cloud pipeline that includes a SMAPPIC
1x1x4 prototype andmultiple AWS services. The prototype executes
the Nginx web server and PHP backend script, as well as interacts
with AWS Lambda and S3 services. Fig. 12 shows the built pipeline.
The incoming HTTP request goes through the following series of
events:

Table 3: Requirements for host machines and cheapest suit-
able AWS EC2 instances [44].

Sniper gem5 Verilator SMAPPIC
&FireSim

#vCPUs 2 1 1 1
Memory 8GB 64GB 8GB 8GB
FPGAs 0 0 0 1
Instance t3.m r5.2xl t3.m f1.2xl
Price/hr $0.04 $0.45 $0.04 $1.65

(1) The HTTP request enters the AWS Lambda function. The
function acts as a gateway from the Internet to the private
network. It redirects requests to the Nginx web server run-
ning on the SMAPPIC prototype.

(2) The web server guides the request through the Common
Gateway Interface (CGI) into the PHP script executed in the
prototype alongside the web server.

(3) The script fetches the data from the AWS S3 service.
(4) The script attaches the current time to the data and returns

it as a response to the web server.
(5) The web server returns the response back to the Lambda

function.
(6) The function returns the response back to the original client.
This workflow presents a unique opportunity for researchers

to integrate their custom design into a massive warehouse-scale
datacenter and test its behavior and performance while interacting
with complex cloud services. It enables the researchers to run RISC-
V in the cloud and Internet with AWS’s vast APIs and observe the
execution details directly inside the machine.

4.5 Cost-Efficient Architecture Modeling
In Sec. 4.1 we demonstrate that SMAPPIC is a valuable tool for
large-scale architecture modeling. However, SMAPPIC also shows
superior cost-efficiency among other modeling tools in the cloud.
We compare the cost of modeling a similar 64-bit RISC-V system
with different tools to demonstrate this. We use Sniper [14] as
an example of a parallel simulator, gem5 [30] as an example of
a cycle-level simulator, and Verilator [51] as an example of an
RTL simulator. We also compare our work against another cloud
FPGA tool, FireSim [24]. We use two FireSim configurations: 1)
without network simulation and with one quad-core RocketChip
instance, and 2) supernode configuration with network simulation
and with four single-core RocketChip instances on one FPGA. We
want to compare with the most cost-efficient FireSim configuration
as measured by running benchmarks.

We execute benchmarks on a real RISC-V chip SiFive Freedom
U740 SoC [46], part of the HiFive Unmatched [47] development
platform, to get baseline results when running benchmarks in real
RISC-V silicon.

We use a SMAPPIC prototype in a 1x4x2 configurationwithout an
inter-node interconnect. This configuration allows us to model four
independent prototypes inside one FPGA and significantly improves
the cost-efficiency of SMAPPIC. The studied system parameters are
listed in Table 2. All other tools were configured to model systems

741

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

deepsjeng
exchange2
gcc

leela

mcf

omnetpp
perlbench
x264

xalancbmk
xz SPECint 2017

0

1

2

3

4

5

6 SMAPPIC
FireSim single-node
FireSim supernode
Sniper

M
od

el
in

g
co

st
, $

11.56 8.24

<0.01 <0.01

Figure 13: Modeling costs in dollars. Results for gem5 are not
shown because its costs are 4-5 orders of magnitude higher
than in all other benchmarks. SMAPPIC delivers the best
cost efficiency in a cloud setting out of all methods.

as similar to ours as possible. It is worth noting that all of the
tools below are configured to use RISC-V workloads, except Sniper.
Sniper has had initial support for RISC-V since version 7.3 [50],
but it could not run RISC-V benchmarks out of the box or after we
attempted to find and fix the problem. Therefore, we run Sniper
with the X86-64 version of benchmarks. We do not expect this to
affect our results significantly.

Our target benchmark suite is SPECint 2017 with the “test” input
size for simplicity. We could not run the benchmark perlbench on
Sniper because it does not support forks inside executing workloads.

For each of the studied tools, we find the smallest and cheapest
suitable instance in AWS EC2 offerings and then use its price per
hour to calculate the cost of benchmark execution. Our minimal
instance selections are described in Table 3.

The main limiting factor of software tools is the amount of mem-
ory the host instance has: Sniper needs at least 8GB for proper
functioning, and most of the gem5 runs could fit into a 64GB alloca-
tion. However, two of the benchmarks required even more memory.
For example, the gem5 run with the mcf benchmark completes
only on a host with 350GB of memory.

Modeling costs are shown in Fig. 13. As we expected, SMAPPIC
shows the best cost-efficiency among other approaches. The main
reason is its ability to allocate multiple prototype instances in a
single FPGA and the high frequency provided by direct RTL-to-
gate mapping. gem5 shows the worst results with 4-5 orders of
magnitude higher cost than other tools because of its large memory
requirements and long execution time. For this reason, we did not
include gem5 results in the chart.

Compared to a single-node FireSim configuration, SMAPPIC
shows about four times better cost-efficiency. Single-node FireSim
and SMAPPIC have similar frequencies. However, SMAPPICmodels
four separate instances in parallel on one FPGA, whereas FireSim
models only one. Similar to SMAPPIC, supernode FireSim puts four
systems into one FPGA but still shows worse results because of its
lower frequency.

For the sake of completeness, we also compare Verilator with
SMAPPIC. In our small “HelloWorld” example, the Verilator simula-
tion takes 65 seconds, and SMAPPIC finishes in 4ms. Based on data

50 100 150 200 250 300 350

0

2k

4k

6k

8k

10k

12k

14k
Setup Cloud On-premises

Modeling Time, days

M
od

el
in

g
C

os
t,

$

Figure 14: Cost of FPGA modeling in the cloud vs. locally
on-premises. The cloud setup is more cost-efficient for up to
200 days of continuous experiments.

from Table 3 we can derive that SMAPPIC is about 1600 times more
cost-efficient. Such a significant advantage makes a big difference
in design verification.

As mentioned in Section 2.1, researchers can avoid using cloud
infrastructure for FPGA prototypes and purchase similar hardware
for on-premise usage instead. Our estimates on the price of similar
servers with similar FPGA boards are shown in Table 1.

Based on these estimates and F1 instance pricing, we can compare
the costs of using cloud and on-premises FPGA prototypes. Results
are shown in Fig. 14.

Given the same prototype configuration running in both cases,
it takes more than 200 days of continuous modeling to justify buy-
ing a private FPGA setup and using it on-premises. We consider
this scenario possible only for huge research groups where such
hardware will be shared between many users. However, even in
such cases, the burden of proper hardware management and lack of
ability to scale modeling makes the cloud option more preferable.

4.6 Remote Work
Using a cloud setup might be the only option during unexpected
workflow disruptions like the current COVID-19 pandemic. In the
last year and a half, together with our collaborators from other
institutions, we finished two large chip tapeouts. These chips are
based on heterogeneous architectures with multiple accelerators
and complex interactions through a coherent cache subsystem.
Such chip parameters require extensive design testing with real,
large workloads and driver-controlled accelerators running under
a full-stack operating system.

In such conditions, SMAPPIC was the only realistic option to per-
form design verification. RTL simulators do not have high enough
performance to make the modeling of complete real system (with
OS) workloads possible. At the same time, physical FPGA access
was not available due to the Work-From-Home order.

After we finished the initial integration of accelerators, the pro-
totype and all of its functionality worked out of the box. The cloud
nature of SMAPPIC allowed us to launch multiple instances and
work in parallel while being physically distributed in many differ-
ent time zones. We found two critical bugs inside the accelerators

742

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

themselves, one bug inside the RISC-V interrupt controller, and one
problem with the interfacing of an accelerator and TRI interface.

4.7 Using SMAPPIC for Education
The value of using FPGAs in teaching architecture classes has been
noted by multiple educators [35, 52]. However, before the era of
cloud FPGAs, educational institutions could afford only limited
use of FPGAs in classes. SMAPPIC is a potent tool for overcoming
this problem. With a proper management tool, educators can use
SMAPPIC to launch hundreds of instances on-demand and pay only
for the time students actually use FPGAs for their assignments or
projects. SMAPPIC is one of the tools used for final projects by
students taking the computer architecture class at our institution
this year.

4.8 Platform Limitations
Even though SMAPPIC allows for many unique use cases that are
not achievable with other tools, there are a couple of factors to
consider before choosing it as a modeling platform.

First, while SMAPPIC provides a parametrized model of a typical
tiled multicore architecture with NoC and directory coherence,
there are only a couple of provided fixed core models. For example,
all case studies in this section used the Ariane core: an in-order
core with a single-issue pipeline which may not be representative
of large-core out-of-order designs. Users have two options on how
to approach this limitation.

(1) Provide the RTL design of their own custom core, use the
functionality provided by the BYOC framework and TRI in-
terface, and integrate it into the SMAPPICmodel. In this case,
the modeling results will be more accurate and represent the
real system. However, this option requires some effort from
the user.

(2) Use one of the core models provided by SMAPPIC out of the
box. This option requires less effort, but the modeling results
will not represent the final target system exactly if its core
differs from the core chosen in SMAPPIC. Nevertheless, we
think this option is valuable for researchers who are more
focused on obtaining qualitative results or care more about
the interactions in the system as a whole. For example, this
option is useful for studying the interaction between the
cores and the integrated accelerators.

Another factor to consider when choosing SMAPPIC for research
is the physical constraints of the FPGA infrastructure:

(1) There is a finite number of gates per FPGA; this restricts the
amount of logic that can be allocated per prototype and its
frequency. For example, F1 FPGAs can fit at most 12 Ariane
tiles at 75MHz frequency. Table 4 shows various possible
SMAPPIC setups. All configurations use core parameters
from Table 2.

(2) Each F1 FPGA contains only four memory slots, and each
node in SMAPPIC has a separate memory controller. This
requirement puts a cap of at most four nodes per FPGA in
SMAPPIC.

(3) Only four FPGAs in the F1 instance are connected with low-
latency PCIe links. Therefore, one SMAPPIC prototype can
include at most four FPGAs.

Table 4: SMAPPIC configurations with frequencies and LUT
utilizations. Configurations are shown in BxC format, where
B is the number of nodes per FPGA, and C is the number of
tiles per node. Tile parameters are listed in Table 2.

Configuration Frequency LUT Utilization
1x12 75MHz 97%
1x10 100MHz 83%
2x4 100MHz 73%
2x5 75MHz 88%
4x2 100MHz 87%

(4) The PCIe connection has a round-trip latency of 1250 ns.
This latency puts a lower limit on modeled inter-node link
latency. For example, at 100MHz, the round-trip latency is
equal to 125 cycles.

Most of these limits are not fundamental and are only dictated
by the AWS infrastructure: the number of tiles per FPGA is limited
by the FPGA size, the number of nodes per FPGA is limited by the
number of DRAM slots per FPGA, and the number of FPGAs in a
prototype is limited by the number of FPGAs in one F1 instance.
The limits can be raised in the future if AWS updates its cloud FPGA
infrastructure or other cloud providers introduce a larger selection
of FPGAs.

We also want to note that SMAPPIC is not a total substitution
for classic software simulators. Researchers often value flexibility
over execution time, cost, or accuracy. FPGA emulation can be a
poor fit in such situations because each system parameter’s change
leads to complete prototype regeneration which can take hours.
However, the use cases discussed above demonstrate situations
where SMAPPIC is the users’ only real option due to its scale,
speed, accuracy, and cost-efficiency.

5 RELATEDWORK
5.1 FPGAs for Architecture Modeling
There are a few commercial tools for FPGA-accelerated design
modeling, such as Cadence Palladium [13], Mentor Veloce [45], and
Synopsys Zebu [55]. These systems are proprietary, have incredibly
high prices (millions of dollars), and are not accessible to most
researchers. SMAPPIC is open-source and uses a publicly available
cloud infrastructure instead.

ProtoFlex [18] and FAST [15] use hardware to accelerate only
the performance layer of the model. Some researchers propose
using an FPGA to model only subparts of the whole system, e.g.,
memory subsystem [53] or NoC [26, 29]. In contrast, SMAPPIC
models each node entirely inside the FPGA, making performance-
accuracy tradeoffs more visible.

RAMP Gold [57], DIABLO [56], and HASim [40] put both per-
formance and functional models into the FPGA. However, these
frameworks use various techniques to pack more target logic in-
side a single FPGA at the cost of lower frequency. SMAPPIC uses
direct gate-to-RTL mapping and keeps frequency as high as possi-
ble instead. SMAPPIC models large systems by partitioning across
multiple FPGAs. Such a scaling strategy has good cost-efficiency in
a cloud setting.

743

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

5.2 Multi-node System Modeling
PriME [23] supports themodeling of independent chips without any
connectivity. MGPUSim [54] was designed specifically for multi-
die modeling but only in the GPU domain. Sniper [14] supports
modeling multi-die systems with shared memory but at much lower
speeds than FPGAs. Unlike all these tools, SMAPPIC supports fast
modeling of heterogeneous shared memory multi-node systems.

Enzian [20] and QuickIA [16] are similar to SMAPPIC in that
they provide the foundation for building heterogeneous multi-chip
prototypes. However, both frameworks use CPU + FPGA design
where only the logic inside the FPGA can be modified. In contrast,
SMAPPIC is fully customizable and can be changed by configuration
options or modifying source code.

BYOC [10] and OpenPiton [9, 11] provide separate tools for
multi-chip modeling and FPGA prototyping. However, they do not
allow making FPGA prototypes of multi-chip architectures. More-
over, they support multi-chip capabilities only through a special
hardware/software mechanism called Coherence Domain Restric-
tion [22]. In contrast, SMAPPIC changes the original BYOC frame-
work to provide multi-node capabilities out of the box without
additional software modifications.

5.3 Multi-FPGA Architecture Modeling
FireSim [24] and DIABLO [56] support the modeling of multi-chip
systems distributed over multiple FPGAs. However, they do it only
without a unified memory, with different chips connected over
Ethernet links. Unlike these tools, SMAPPIC provides coherent
inter-node interconnect that tunnels existing inter-node intercon-
nect through FPGA’s PCIe connection. This mechanism allows the
modeling of multi-node systems with unified memory.

The Twinstar platform [6] can model the full 16-core Bluegene/Q
compute chip but uses a local, sophisticated, expensive, and propri-
etary setup consisting of 60 FPGAs and can reach only speeds of
4MHz. Moreover, the logic partition between the FPGAs in Twin-
star was done manually by the engineers. SMAPPIC divides the
design between FPGAs based on the user’s input and leverages the
cloud infrastructure to free researchers from these complications.

5.4 Architecture Modeling in the Cloud and Its
Cost Optimization

The FAME work [58] estimates the cost of software architecture
simulation in the cloud. It concludes that running FPGA simulations
on-premises is more cost-effective than running software simula-
tions in the cloud. Our work makes much broader estimations and
adds price calculations for cloud FPGA simulations and different
types of software simulations.

The FireSim paper [24] compares the cost of cloud and on-
premises FPGA simulation and concludes that large-scale simu-
lations are financially sustainable only when using cloud infras-
tructure. Unlike SMAPPIC, FireSim is not compared with software
simulators in terms of pricing.

5.5 Architecture Modeling in Cloud FPGAs
The main previous work on utilizing cloud FPGAs for architecture
modeling is FireSim [24]. We consider SMAPPIC and FireSim two

significantly different frameworks because they have different goals
influencing their designs.

FireSim is designed from the ground up to be a datacenter simula-
tor, and there is a big emphasis on simulating the network between
separate nodes. This factor puts an additional restriction on the
simulation speed and the size of separate computational nodes.

Unlike FireSim, SMAPPIC is designed to make the modeling of a
separate system scalable. This goal allows SMAPPIC to scale pro-
totypes up to large, 48-core, 4-node systems and be cost-effective
when modeling small systems simultaneously. This result is achiev-
able because we do not have the additional requirement of simulat-
ing IP network interactions.

6 CONCLUSION
This paper presents SMAPPIC – the first open-source prototype plat-
form for shared memory multi-die architectures on cloud FPGAs.
SMAPPIC achieves ease of use, cost-effectiveness, and multi-node
scalability through modular, hierarchical, and parametrizable struc-
ture based on a cloud FPGA backend. By using BYOC’s infrastruc-
ture and AWS EC2 F1 instances, SMAPPIC provides a configurable
underlying design that allows researchers to quickly and easily
start using cloud-enabled FPGA prototypes.

SMAPPIC makes many unique use cases possible or signifi-
cantly more accessible, in particular: large-scale multi-node ar-
chitecture modeling, accelerator evaluation and verification, hard-
ware/software co-development, in situ studies of custom architec-
ture interaction with a cloud infrastructure, cost-efficient modeling,
remote work, and education. We use SMAPPIC to build the first
open-source multi-node 48-core 64-bit Linux-capable RISC-V sys-
tem with unified memory and to make the first comparison of the
architecture modeling methods’ costs in a cloud. SMAPPIC has the
potential to enable even more exceptional studies in the future.

ACKNOWLEDGMENTS
We would like to thank Alexey Lavrov, Jonathan Balkind, and the
whole OpenPiton/BYOC team for sharing their expertise on two
frameworks, Marcelo Orenes-Vera for his help in reimplementing
MAPLE in SMAPPIC, Georgios Tziantzioulis for his aid with GNG
accelerator integration, and Ang Li, Zujun Tan, Yebin Chon, Ro-
han Prabhakar, August Ning, and anonymous reviewers for their
valuable feedback. We also thank the AWS Cloud Credit for Re-
search program. This material is based on research sponsored by
the National Science Foundation under Grant No. CNS-1823222, Air
Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreements No. FA8650-18-2-7852
and FA8650-18-2-7862. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation.

744

SMAPPIC: Scalable Multi-FPGA Architecture Prototype Platform in the Cloud ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

REFERENCES
[1] ACM. 2020. ISCA ’20: Proceedings of the ACM/IEEE 47th Annual International

Symposium on Computer Architecture. https://dl.acm.org/doi/proceedings/10.
5555/3426241

[2] ACM. 2021. ASPLOS 2021: Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
https://dl.acm.org/doi/proceedings/10.1145/3445814

[3] ACM. 2021. PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. https:
//dl.acm.org/doi/proceedings/10.1145/3453483

[4] Dr. Ian Cutress Andrei Frumusanu. 2021. AMD 3rd Gen EPYC Milan Review:
A Peak vs Per Core Performance Balance. https://www.anandtech.com/show/
16529/amd-epyc-milan-review/4

[5] John Hauser Andrew Waterman, Krste Asanović. 2021. RISC-V Specification.
https://riscv.org/technical/specifications/

[6] Sameh Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit Kapur,
Benjamin Parker, Thomas Roewer, Proshanta Saha, Todd Takken, and José Tierno.
2012. A Cycle-Accurate, Cycle-Reproducible Multi-FPGA System for Accelerating
Multi-Core Processor Simulation. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (Monterey, California, USA) (FPGA
’12). Association for Computing Machinery, New York, NY, USA, 153–162. https:
//doi.org/10.1145/2145694.2145720

[7] David H. Bailey. 2011. NAS Parallel Benchmarks. Springer US, Boston, MA,
1254–1259. https://doi.org/10.1007/978-0-387-09766-4_133

[8] Raghuraman Balasubramanian, Vinay Gangadhar, Ziliang Guo, Chen-Han Ho,
Cherin Joseph, Jaikrishnan Menon, Mario Paulo Drumond, Robin Paul, Sharath
Prasad, Pradip Valathol, and Karthikeyan Sankaralingam. 2015. MIAOW - An
open source RTL implementation of a GPGPU. In 2015 IEEE Symposium in Low-
Power and High-Speed Chips (COOL CHIPS XVIII). 1–3. https://doi.org/10.1109/
CoolChips.2015.7158663

[9] Jonathan Balkind, Ting-Jung Chang, Paul J. Jackson, Georgios Tziantzioulis, Ang
Li, Fei Gao, Alexey Lavrov, Grigory Chirkov, Jinzheng Tu, Mohammad Shahrad,
and DavidWentzlaff. 2020. OpenPiton at 5: A Nexus for Open and Agile Hardware
Design. IEEE Micro 40, 4 (2020), 22–31. https://doi.org/10.1109/MM.2020.2997706

[10] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang
Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati,
Luca Benini, and David Wentzlaff. 2020. BYOC: A "Bring Your Own Core"
Framework for Heterogeneous-ISA Research. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 699–714. https://doi.org/10.1145/
3373376.3378479

[11] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. SIGARCH Comput. Archit. News 44, 2 (mar 2016), 217–232.
https://doi.org/10.1145/2980024.2872414

[12] Bittware. [n. d.]. BittWare XUP-P3R. https://www.bittware.com/fpga/xup-p3r/
[13] Cadence. [n. d.]. High performance hardware and software verification and debug

of complex SoCs and Systems. https://www.cadence.com/en_US/home/tools/
system-design-and-verification/emulation-and-prototyping/palladium.html

[14] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In SC ’11: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12. https://doi.org/10.1145/
2063384.2063454

[15] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William Reinhart,
Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat. 2007. FPGA-Accelerated
Simulation Technologies (FAST): Fast, Full-System, Cycle-Accurate Simulators.
In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
2007). 249–261. https://doi.org/10.1109/MICRO.2007.36

[16] Nagabhushan Chitlur, Ganapati Srinivasa, Scott Hahn, P K Gupta, Dheeraj Reddy,
David Koufaty, Paul Brett, Abirami Prabhakaran, Li Zhao, Nelson Ijih, Suchit
Subhaschandra, Sabina Grover, Xiaowei Jiang, and Ravi Iyer. 2012. QuickIA:
Exploring heterogeneous architectures on real prototypes. In IEEE International
Symposium on High-Performance Comp Architecture. 1–8. https://doi.org/10.1109/
HPCA.2012.6169046

[17] Rangeen Basu Roy Chowdhury, Anil K. Kannepalli, and Eric Rotenberg. 2016.
AnyCore-1: A comprehensively adaptive 4-way superscalar processor. In 2016
IEEE Hot Chips 28 Symposium (HCS). 1–1. https://doi.org/10.1109/HOTCHIPS.
2016.7936237

[18] Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C. Hoe, Ken Mai,
and Babak Falsafi. 2009. ProtoFlex: Towards Scalable, Full-System Multiprocessor
Simulations Using FPGAs. ACM Trans. Reconfigurable Technol. Syst. 2, 2, Article
15 (jun 2009), 32 pages. https://doi.org/10.1145/1534916.1534925

[19] Alibaba Cloud. [n. d.]. Alibaba Cloud Computing Services. https:
//www.alibabacloud.com/product/computing?spm=a3c0i.239195.6791778070.
157.7af912bdlh7EC5#J_9413186770

[20] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Tur-
owski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Licciardello, Kristina
Martsenko, Reto Achermann, Gustavo Alonso, and Timothy Roscoe. 2022. En-
zian: An Open, General, CPU/FPGA Platform for Systems Software Research. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS 2022). Association for Computing Machinery, New York, NY, USA, 434–451.
https://doi.org/10.1145/3503222.3507742

[21] Andrei Frumusanu. 2021. Intel 3rd Gen Xeon Scalable (Ice Lake SP) Review:
Generationally Big, Competitively Small. https://www.anandtech.com/show/
16594/intel-3rd-gen-xeon-scalable-review/4

[22] Yaosheng Fu, Tri M. Nguyen, and David Wentzlaff. 2015. Coherence domain
restriction on large scale systems. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 686–698. https://doi.org/10.1145/
2830772.2830832

[23] Yaosheng Fu and David Wentzlaff. 2014. PriME: A parallel and distributed
simulator for thousand-core chips. In 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 116–125. https://doi.org/
10.1109/ISPASS.2014.6844467

[24] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, Piscataway, NJ, USA, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[25] Hassan Khan, David Hounshell, and Erica Fuchs. 2018. Science and research
policy at the end of Moore’s law. Nature Electronics 1 (01 2018). https://doi.org/
10.1038/s41928-017-0005-9

[26] Kouadri-Mostefaoui, Abdellah-Medjadji, Benaoumeur Senouci, and Frederic
Petrot. 2008. Large Scale On-Chip Networks : An Accurate Multi-FPGA Emu-
lation Platform. In 2008 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools. 3–9. https://doi.org/10.1109/DSD.2008.130

[27] D.-U. Lee, J.D. Villasenor, W. Luk, and P.H.W. Leong. 2006. A hardware Gaussian
noise generator using the Box-Muller method and its error analysis. IEEE Trans.
Comput. 55, 6 (2006), 659–671. https://doi.org/10.1109/TC.2006.81

[28] Guangxi Liu. [n. d.]. OpenCores Gaussian Noise Generator. https://opencores.
org/projects/gng

[29] Yangfan Liu, Peng Liu, Yingtao Jiang, Mei Yang, Kejun Wu, Weidong Wang,
and Qingdong Yao. 2010. Building a multi-FPGA-based emulation framework
to support networks-on-chip design and verification. International Journal of
Electronics - INT J ELECTRON 97 (10 2010), 1241–1262. https://doi.org/10.1080/
00207217.2010.512017

[30] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. https://doi.org/10.48550/ARXIV.2007.03152

[31] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jackson,
Yaosheng Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhou, and
David Wentzlaff. 2018. Power and Energy Characterization of an Open Source
25-Core Manycore Processor. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 762–775. https://doi.org/10.1109/
HPCA.2018.00070

[32] Microsoft. [n. d.]. NP-series. https://docs.microsoft.com/en-us/azure/virtual-
machines/np-series

[33] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H. Loh, Mahesh
Subramony, and Sean White. 2021. Pioneering Chiplet Technology and Design
for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).
57–70. https://doi.org/10.1109/ISCA52012.2021.00014

[34] NVIDIA. [n. d.]. NVIDIA Deep Learning Accelerator. http://nvdla.org/
[35] Joaquín Olivares, José Manuel Palomares, José Manuel Soto, and Juan Carlos

Gámez. 2010. Teaching microprocessors design using FPGAs. In IEEE EDUCON
2010 Conference. 1189–1193. https://doi.org/10.1109/EDUCON.2010.5492390

745

https://dl.acm.org/doi/proceedings/10.5555/3426241
https://dl.acm.org/doi/proceedings/10.5555/3426241
https://dl.acm.org/doi/proceedings/10.1145/3445814
https://dl.acm.org/doi/proceedings/10.1145/3453483
https://dl.acm.org/doi/proceedings/10.1145/3453483
https://www.anandtech.com/show/16529/amd-epyc-milan-review/4
https://www.anandtech.com/show/16529/amd-epyc-milan-review/4
https://riscv.org/technical/specifications/
https://doi.org/10.1145/2145694.2145720
https://doi.org/10.1145/2145694.2145720
https://doi.org/10.1007/978-0-387-09766-4_133
https://doi.org/10.1109/CoolChips.2015.7158663
https://doi.org/10.1109/CoolChips.2015.7158663
https://doi.org/10.1109/MM.2020.2997706
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/2980024.2872414
https://www.bittware.com/fpga/xup-p3r/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/MICRO.2007.36
https://doi.org/10.1109/HPCA.2012.6169046
https://doi.org/10.1109/HPCA.2012.6169046
https://doi.org/10.1109/HOTCHIPS.2016.7936237
https://doi.org/10.1109/HOTCHIPS.2016.7936237
https://doi.org/10.1145/1534916.1534925
https://www.alibabacloud.com/product/computing?spm=a3c0i.239195.6791778070.157.7af912bdlh7EC5#J_9413186770
https://www.alibabacloud.com/product/computing?spm=a3c0i.239195.6791778070.157.7af912bdlh7EC5#J_9413186770
https://www.alibabacloud.com/product/computing?spm=a3c0i.239195.6791778070.157.7af912bdlh7EC5#J_9413186770
https://doi.org/10.1145/3503222.3507742
https://www.anandtech.com/show/16594/intel-3rd-gen-xeon-scalable-review/4
https://www.anandtech.com/show/16594/intel-3rd-gen-xeon-scalable-review/4
https://doi.org/10.1145/2830772.2830832
https://doi.org/10.1145/2830772.2830832
https://doi.org/10.1109/ISPASS.2014.6844467
https://doi.org/10.1109/ISPASS.2014.6844467
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1038/s41928-017-0005-9
https://doi.org/10.1038/s41928-017-0005-9
https://doi.org/10.1109/DSD.2008.130
https://doi.org/10.1109/TC.2006.81
https://opencores.org/projects/gng
https://opencores.org/projects/gng
https://doi.org/10.1080/00207217.2010.512017
https://doi.org/10.1080/00207217.2010.512017
https://doi.org/10.48550/ARXIV.2007.03152
https://doi.org/10.1109/HPCA.2018.00070
https://doi.org/10.1109/HPCA.2018.00070
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://docs.microsoft.com/en-us/azure/virtual-machines/np-series
https://doi.org/10.1109/ISCA52012.2021.00014
http://nvdla.org/
https://doi.org/10.1109/EDUCON.2010.5492390

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Grigory Chirkov and David Wentzlaff

[36] OpenCores. 2022. OpenCores project. https://opencores.org/
[37] Oracle. [n. d.]. OpenSPARC T1. https://www.oracle.com/servers/technologies/

opensparc-t1-page.html
[38] Marcelo Orenes-Vera, Aninda Manocha, Jonathan Balkind, Fei Gao, Juan L.

Aragón, David Wentzlaff, and Margaret Martonosi. 2022. Tiny but Mighty:
Designing and Realizing Scalable Latency Tolerance for Manycore SoCs. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture
(New York, New York) (ISCA ’22). Association for Computing Machinery, New
York, NY, USA, 817–830. https://doi.org/10.1145/3470496.3527400

[39] Aleksander Osman. [n. d.]. ao486. https://github.com/alfikpl/ao486
[40] Michael Pellauer, Michael Adler, Michel Kinsy, Angshuman Parashar, and Joel

Emer. 2011. HAsim: FPGA-based high-detail multicore simulation using time-
division multiplexing. In 2011 IEEE 17th International Symposium on High Per-
formance Computer Architecture. 406–417. https://doi.org/10.1109/HPCA.2011.
5749747

[41] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul
Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile
Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020),
93–102. https://doi.org/10.1109/MM.2020.2996145

[42] Amazon Web Services. 2021. AWS Shell Interface Specification.
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_
Specification.md

[43] Amazon Web Services. 2022. Amazon EC2 F1 Instances. https://aws.amazon.
com/ec2/instance-types/f1/

[44] Amazon Web Services. 2022. Amazon EC2 On-Demand Pricing. https://aws.
amazon.com/ec2/pricing/on-demand/

[45] Siemens. [n. d.]. Veloce HW-Assisted Verification System. https://eda.sw.siemens.
com/en-US/ic/veloce/

[46] SiFive. 2021. SiFive FU740-C000 Manual. https://sifive.cdn.prismic.io/sifive/
de1491e5-077c-461d-9605-e8a0ce57337d_fu740-c000-manual-v1p3.pdf

[47] SiFive. 2022. HiFive Unmatched. https://www.sifive.com/boards/hifive-
unmatched

[48] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Paral-
lelism. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA,
1093–1108. https://doi.org/10.1145/3373376.3378493

[49] James E. Smith. 1982. Decoupled Access/Execute Computer Architectures.
SIGARCH Comput. Archit. News 10, 3 (apr 1982), 112–119. https://doi.org/10.
1145/1067649.801719

[50] Sniper. 2021. Sniper Releases. http://snipersim.org/w/Releases
[51] Wilson Snyder. 2013. Verilator: Open simulation-growing up. DVClub Bristol

(2013).
[52] Andrew Strelzoff. 2007. Teaching computer architecture with fpga soft processors.

In ASEE Southeast Section Conference.
[53] Bharat Sukhwani, Thomas Roewer, Charles L. Haymes, Kyu-Hyoun Kim, Adam J.

McPadden, Daniel M. Dreps, Dean Sanner, Jan Van Lunteren, and Sameh Asaad.
2017. ConTutto – ANovel FPGA-based Prototyping Platform Enabling Innovation
in the Memory Subsystem of a Server Class Processor. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 15–26. https:

//doi.org/10.1145/3123939.3124535
[54] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, SpencerHance, CarterMcCardwell, Vincent Zhao, Harrison
Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,
John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 197–209. https://doi.org/10.
1145/3307650.3322230

[55] Synopsys. [n. d.]. ZeBu Server 4. https://www.synopsys.com/verification/
emulation/zebu-server.html

[56] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.
2015. DIABLO: A Warehouse-Scale Computer Network Simulator Using FPGAs.
SIGPLAN Not. 50, 4 (mar 2015), 207–221. https://doi.org/10.1145/2775054.2694362

[57] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook,
David Patterson, and Krste Asanović. 2010. RAMP gold: an FPGA-based architec-
ture simulator for multiprocessors. In Proceedings of the 47th Design Automation
Conference. 463–468. https://doi.org/10.1145/1837274.1837390

[58] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and
David Patterson. 2010. A Case for FAME: FPGA Architecture Model Execution. In
Proceedings of the 37th Annual International Symposium on Computer Architecture
(Saint-Malo, France) (ISCA ’10). Association for Computing Machinery, New York,
NY, USA, 290–301. https://doi.org/10.1145/1815961.1815999

[59] Robert Tausworthe. 1965. Random Numbers Generated by Linear Recurrence
Modulo Two. Mathematics of Computation - Math. Comput. 19 (05 1965), 201–201.
https://doi.org/10.2307/2003345

[60] Clifford Wolf. [n. d.]. PicoRV32. https://github.com/cliffordwolf/picorv32
[61] Xilinx. 2016. Xilinx AXI UART 16550 v2.0. https://www.xilinx.com/

support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-
uart16550.pdf

[62] Xilinx. 2022. Alveo U250 Data Center Accelerator Card. https://www.xilinx.
com/products/boards-and-kits/alveo/u250.html

[63] Xilinx. 2022. DMA/Bridge Subsystem for Express v4.1. https:
//www.xilinx.com/content/dam/xilinx/support/documentation/ip_
documentation/xdma/v4_1/pg195-pcie-dma.pdf

[64] Xilinx. 2022. Xilinx Virtex UltraScale+. https://www.xilinx.com/products/silicon-
devices/fpga/virtex-ultrascale-plus.html#productAdvantages

[65] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/tvlsi.2019.
2926114

[66] Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris Apostolakis, Stephen R.
Beard, Nayana P. Nagendra, TaewookOh, andDavid I. August. 2019. Architectural
Support for Containment-Based Security. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Comput-
ing Machinery, New York, NY, USA, 361–377. https://doi.org/10.1145/3297858.
3304020

Received 2022-07-07; accepted 2022-09-22

746

https://opencores.org/
https://www.oracle.com/servers/technologies/opensparc-t1-page.html
https://www.oracle.com/servers/technologies/opensparc-t1-page.html
https://doi.org/10.1145/3470496.3527400
https://github.com/alfikpl/ao486
https://doi.org/10.1109/HPCA.2011.5749747
https://doi.org/10.1109/HPCA.2011.5749747
https://doi.org/10.1109/MM.2020.2996145
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://eda.sw.siemens.com/en-US/ic/veloce/
https://eda.sw.siemens.com/en-US/ic/veloce/
https://sifive.cdn.prismic.io/sifive/de1491e5-077c-461d-9605-e8a0ce57337d_fu740-c000-manual-v1p3.pdf
https://sifive.cdn.prismic.io/sifive/de1491e5-077c-461d-9605-e8a0ce57337d_fu740-c000-manual-v1p3.pdf
https://www.sifive.com/boards/hifive-unmatched
https://www.sifive.com/boards/hifive-unmatched
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/1067649.801719
https://doi.org/10.1145/1067649.801719
http://snipersim.org/w/Releases
https://doi.org/10.1145/3123939.3124535
https://doi.org/10.1145/3123939.3124535
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html
https://doi.org/10.1145/2775054.2694362
https://doi.org/10.1145/1837274.1837390
https://doi.org/10.1145/1815961.1815999
https://doi.org/10.2307/2003345
https://github.com/cliffordwolf/picorv32
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_uart16550/v2_0/pg143-axi-uart16550.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productAdvantages
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productAdvantages
https://doi.org/10.1109/tvlsi.2019.2926114
https://doi.org/10.1109/tvlsi.2019.2926114
https://doi.org/10.1145/3297858.3304020
https://doi.org/10.1145/3297858.3304020

	Abstract
	1 Introduction
	2 Background
	2.1 AWS EC2 F1 Infrastructure
	2.2 BYOC and OpenPiton

	3 Architecture
	3.1 Inter-node Interconnect
	3.2 Memory Interfaces
	3.3 RISC-V Interrupt Controller
	3.4 I/O Interfaces
	3.5 Modeling Off-node Interfaces

	4 SMAPPIC Use Cases
	4.1 Large-Scale Multi-node Architecture Modeling
	4.2 Accelerator Verification and Evaluation
	4.3 Hardware/Software Co-development
	4.4 In Situ Studies of Custom Architecture Interaction with Cloud Infrastructure
	4.5 Cost-Efficient Architecture Modeling
	4.6 Remote Work
	4.7 Using SMAPPIC for Education
	4.8 Platform Limitations

	5 Related Work
	5.1 FPGAs for Architecture Modeling
	5.2 Multi-node System Modeling
	5.3 Multi-FPGA Architecture Modeling
	5.4 Architecture Modeling in the Cloud and Its Cost Optimization
	5.5 Architecture Modeling in Cloud FPGAs

	6 Conclusion
	Acknowledgments
	References

